We tried to mimic different operations for our systems, Trim and HTRA1 by focusing on computer simulations. We wrote a python program to facilitate the ranking process after the prediction of the 3D structure of any protein to be ready for further processes such as molecular docking, molecular dynamic simulation, and mathematical modeling to predict and test our project. our systems consist of various parts that bind or interact with each other. To validate the trim21 system's ability to call ubiquitin molecules and recruit proteasomal degradation of the targeted protein (tau) intercellularly in the early stage. The interactions were validated using pull-down assay, and NATIVE-PAGE. Then the ability of the system to recruit ubiquitin was assayed using in-vitro ubiquitination and analyzed by western blotting. regarding validation of the HTRA1 system's ability and specificity to degrade either tau or β-amyloid intercellularly and extracellularly in the late stage, the binding affinities of the system parts were validated using pull-down assay, while the switchable ability and specificity of HTRA1 were validated by protease assay and compared with different controls to prove that all systems are valid and effective in treating Alzheimer’s disease whether in early or late stages.
1- Békés, M., Langley, D.R. & Crews, C.M. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov 21, 181–200 (2022). https://doi.org/10.1038/s41573-021-00371-6
2-Bayer, E., Morag, E., & Lamed, R. (1994). The cellulosome — A treasure-trove for biotechnology. Trends In Biotechnology, 12(9), 379-386. https://doi.org/10.1016/0167-7799(94)90039-6
3-Benkert, P., Biasini, M., & Schwede, T. (2010). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27(3), 343-350. https://doi.org/10.1093/bioinformatics/btq662
4-Benn, J., Mukadam, A., & McEwan, W. (2022). Targeted protein degradation using intracellular antibodies and its application to neurodegenerative disease. Seminars In Cell &Amp; Developmental Biology, 126, 138-149. https://doi.org/10.1016/j.semcdb.2021.09.012
5-Craig, S., Foong, F., & Nordon, R. (2006). Engineered proteins containing the cohesin and dockerin domains from Clostridium thermocellum provides a reversible, high affinity interaction for biotechnology applications. Journal Of Biotechnology, 121(2), 165-173. https://doi.org/10.1016/j.jbiotec.2005.07.005
6-Dammers, C., Yolcu, D., Kukuk, L., Willbold, D., Pickhardt, M., & Mandelkow, E. et al. (2016). Selection and Characterization of Tau Binding ᴅ-Enantiomeric Peptides with Potential for Therapy of Alzheimer Disease. PLOS ONE, 11(12), e0167432. https://doi.org/10.1371/journal.pone.0167432
7-Desta, I., Porter, K., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and Its Limits in Rigid Body Protein-Protein Docking. Structure, 28(9), 1071-1081.e3. https://doi.org/10.1016/j.str.2020.06.006
8-Drummond, M., & Williams, C. (2019). In Silico Modeling of PROTAC-Mediated Ternary Complexes: Validation and Application. Journal Of Chemical Information And Modeling, 59(4), 1634-1644. https://doi.org/10.1021/acs.jcim.8b00872
9-Du, Z., Su, H., Wang, W. et al. The trRosetta server for fast and accurate protein structure prediction. Nat Protoc 16, 5634–5651 (2021). https://doi.org/10.1038/s41596-021-00628-9
10-Eswar, N., Webb, B., Marti‐Renom, M., Madhusudhan, M., Eramian, D., & Shen, M. et al. (2006). Comparative Protein Structure Modeling Using Modeller. Current Protocols In Bioinformatics, 15(1). https://doi.org/10.1002/0471250953.bi0506s15
11-Fradinger, E., Monien, B., Urbanc, B., Lomakin, A., Tan, M., & Li, H. et al. (2008). C-terminal peptides coassemble into Aβ42 oligomers and protect neurons against Aβ42-induced neurotoxicity. Proceedings Of The National Academy Of Sciences, 105(37), 14175-14180. https://doi.org/10.1073/pnas.0807163105
12-Funke, S., Dammers, C., Yolcu, D., Kukuk, L., Rudolph, S., & Willbold, D. (2013). O2–08–03: Selection and characterization of tau‐binding D‐enantiomeric peptides for therapeutic applications in neurodegenerative diseases. Alzheimer's &Amp; Dementia, 9(4S_Part_8). https://doi.org/10.1016/j.jalz.2013.04.179
13-Jiménez-García, B., Roel-Touris, J., Romero-Durana, M., Vidal, M., Jiménez-González, D., & Fernández-Recio, J. (2017). LightDock: a new multi-scale approach to protein–protein docking. Bioinformatics, 34(1), 49-55. https://doi.org/10.1093/bioinformatics/btx555
14-Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., & Ronneberger, O. et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2
15-Kozakov, D., Hall, D., Xia, B., Porter, K., Padhorny, D., & Yueh, C. et al. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255-278. https://doi.org/10.1038/nprot.2016.169
16-Lavi, A., Ngan, C., Movshovitz-Attias, D., Bohnuud, T., Yueh, C., & Beglov, D. et al. (2013). Detection of peptide-binding sites on protein surfaces: The first step toward the modeling and targeting of peptide-mediated interactions. Proteins: Structure, Function, And Bioinformatics, 81(12), 2096-2105. https://doi.org/10.1002/prot.24422
17-Li, G., Huang, Z., Zhang, C., Dong, B., Guo, R., & Yue, H. et al. (2015). Construction of a linker library with widely controllable flexibility for fusion protein design. Applied Microbiology And Biotechnology, 100(1), 215-225. https://doi.org/10.1007/s00253-015-6985-3
18-Louche, A., Salcedo, S., & Bigot, S. (2017). Protein–Protein Interactions: Pull-Down Assays. Methods In Molecular Biology, 247-255. https://doi.org/10.1007/978-1-4939-7033-9_20
19- M, B., F, D., I, A., J, D., S, O., & GR, L. et al. (2022). Accurate prediction of protein structures and interactions using a three-track neural network. Yearbook Of Paediatric Endocrinology. https://doi.org/10.1530/ey.19.15.15
20-MURWANTOKO, YANO, M., UETA, Y., MURASAKI, A., KANDA, H., OKA, C., & KAWAICHI, M. (2004). Binding of proteins to the PDZ domain regulates proteolytic activity of HTRA1 serine protease. Biochemical Journal, 381(3), 895–904. https://doi.org/10.1042/bj20040435
21-Neklesa, T., Winkler, J., & Crews, C. (2017). Targeted protein degradation by PROTACs. Pharmacology &Amp; Therapeutics, 174, 138-144. https://doi.org/10.1016/j.pharmthera.2017.02.027
22-Park, T., Baek, M., Lee, H., & Seok, C. (2019). GalaxyTongDock: Symmetric and asymmetric ab initio protein–protein docking web server with improved energy parameters. Journal Of Computational Chemistry, 40(27), 2413-2417. https://doi.org/10.1002/jcc.25874
23-Roel-Touris, J., Jiménez-García, B., & Bonvin, A. (2020). Integrative modeling of membrane-associated protein assemblies. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-20076-5
24-Reddy Chichili, V., Kumar, V., & Sivaraman, J. (2013). Linkers in the structural biology of protein-protein interactions. Protein Science, 22(2), 153-167. https://doi.org/10.1002/pro.2206
25-Roel-Touris, J., Bonvin, A., & Jiménez-García, B. (2019). LightDock goes information-driven. Bioinformatics, 36(3), 950-952. https://doi.org/10.1093/bioinformatics/btz642
26-Runyon, S., Zhang, Y., Appleton, B., Sazinsky, S., Wu, P., & Pan, B. et al. (2007). Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3. Protein Science, 16(11), 2454-2471. https://doi.org/10.1110/ps.073049407
27-Sadowski, M., Pankiewicz, J., Scholtzova, H., Ripellino, J., Li, Y., & Schmidt, S. et al. (2004). A Synthetic Peptide Blocking the Apolipoprotein E/β-Amyloid Binding Mitigates β-Amyloid Toxicity and Fibril Formation in Vitro and reduces β-Amyloid Plaques in Transgenic Mice. The American Journal of Pathology, 165(3), 937-948. https://doi.org/10.1016/s0002-9440(10)63355-x
28-Schumacher, T., Mayr, L., Minor, D., Milhollen, M., Burgess, M., & Kim, P. (1996). Identification of d -Peptide Ligands Through Mirror-Image Phage Display. Science, 271(5257), 1854-1857. https://doi.org/10.1126/science.271.5257.1854
29-Seidler, P., Boyer, D., Rodriguez, J., Sawaya, M., Cascio, D., & Murray, K. et al. (2017). Structure-based inhibitors of tau aggregation. Nature Chemistry, 10(2), 170-176. https://doi.org/10.1038/nchem.2889
30-Sinha D, Bakhshi M, Vora R. Ligand binding assays with recombinant proteins refolded on an affinity matrix. Biotechniques. 1994 Sep;17(3):509-12, 514. PMID: 7818905.
31-Stein, V., & Alexandrov, K. (2014). Protease-based synthetic sensing and signal amplification. Proceedings Of The National Academy Of Sciences, 111(45), 15934-15939. https://doi.org/10.1073/pnas.1405220111
32-Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F., & Goehler, H. et al. (2005). A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome. Cell, 122(6), 957-968. https://doi.org/10.1016/j.cell.2005.08.029
33-Su, H., Wang, W., Du, Z., Peng, Z., Gao, S., Cheng, M., & Yang, J. (2021). Improved Protein Structure Prediction Using a New Multi‐Scale Network and Homologous Templates. Advanced Science, 8(24), 2102592. https://doi.org/10.1002/advs.202102592
34-Troup, R., Fallan, C., & Baud, M. (2020). Current strategies for the design of PROTAC linkers: a critical review. Exploration Of Targeted Anti-Tumor Therapy, 1(5). https://doi.org/10.37349/etat.2020.00018
35-Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S., & Xia, B. et al. (2017). New additions to the C lus P ro server motivated by CAPRI. Proteins: Structure, Function, And Bioinformatics, 85(3), 435-444. https://doi.org/10.1002/prot.25219
36-Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., & Baker, D. (2020). Improved protein structure prediction using predicted interresidue orientations. Proceedings Of The National Academy Of Sciences, 117(3), 1496-1503. https://doi.org/10.1073/pnas.1914677117
37- Zhao, Q., & Xie, Q. (2022). In vitro Protein Ubiquitination Assays. Bio-protocol.org. Retrieved 8 October 2022, from https://bio-protocol.org/e928.