snitch system refernce
UniProt. (2022). Retrieved 27 September 2022, from https://www.uniprot.org/uniprotkb?facets=reviewed%3Atrue%2Cmodel_organism%3A9606%2Clength%3A%5B1%20TO%20200%5D&query=%28keyword%3AKW-0722%29
Rey, J., Breiden, M., Lux, V., Bluemke, A., Steindel, M., & Ripkens, K. et al. (2022). An allosteric HTRA1-calpain 2 complex with a restricted activation profile. Proceedings Of The National Academy Of Sciences, 119(14). doi: 10.1073/pnas.2113520119
Romero-Molina, S., Ruiz-Blanco, Y., Mieres-Perez, J., Harms, M., Münch, J., Ehrmann, M., & Sanchez-Garcia, E. (2022). PPI-Affinity: A Web Tool for the Prediction and Optimization of Protein–Peptide, and Protein-Protein Binding Affinity. Journal Of Proteome Research, 21(8), 1829-1841. DOI: 10.1021/acs.jproteome.2c00020
Lu, J., Cao, Q., Wang, C., Zheng, J., Luo, F., & Xie, J. et al. (2019). Structure-Based Peptide Inhibitor Design of Amyloid-β Aggregation. Frontiers In Molecular Neuroscience, 12. doi: 10.3389/fnmol.2019.00054
Stein, V., & Alexandrov, K. (2014). Protease-based synthetic sensing and signal amplification. Proceedings Of The National Academy Of Sciences, 111(45), 15934-15939. doi: 10.1073/pnas.1405220111
UniProt. (2022). Retrieved 27 September 2022, from https://www.uniprot.org/uniprotkb/P0C7L1/entry
UniProt. (2022). Retrieved 27 September 2022, from https://www.uniprot.org/uniprotkb/Q8IUB5/entry
Runyon, S., Zhang, Y., Appleton, B., Sazinsky, S., Wu, P., & Pan, B. et al. (2007). Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3. Protein Science, 16(11), 2454-2471. doi: 10.1110/ps.073049407
UniProt. (2022). Retrieved 28 September 2022, from https://www.uniprot.org/uniprotkb/Q92743/entry
Do, T., Economou, N., Chamas, A., Buratto, S., Shea, J., & Bowers, M. (2014). Interactions between Amyloid-β and Tau Fragments Promote Aberrant Aggregates: Implications for Amyloid Toxicity. The Journal Of Physical Chemistry B, 118(38), 11220-11230. doi: 10.1021/jp506258g
Xue, L., Rodrigues, J., Kastritis, P., Bonvin, A., & Vangone, A. (2016). PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics, btw514. doi: 10.1093/bioinformatics/btw514
Kozakov, D., Hall, D., Xia, B., Porter, K., Padhorny, D., & Yueh, C. et al. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255-278. doi: 10.1038/nprot.2016.169
Park, T., Baek, M., Lee, H., & Seok, C. (2019). GalaxyTongDock: Symmetric and asymmetric ab initio protein–protein docking web server with improved energy parameters. Journal Of Computational Chemistry, 40(27), 2413-2417. doi: 10.1002/jcc.25874
Ainavarapu, S., Brujić, J., Huang, H., Wiita, A., Lu, H., & Li, L. et al. (2007). Contour Length and Refolding Rate of a Small Protein Controlled by Engineered Disulfide Bonds. Biophysical Journal, 92(1), 225-233. doi: 10.1529/biophysj.106.091561
sink plug system refernce
Seidler, P., Boyer, D., Rodriguez, J., Sawaya, M., Cascio, D., Murray, K., Gonen, T., and Eisenberg, D., 2017. Structure-based inhibitors of tau aggregation. Nature Chemistry, 10(2), pp.170-176.
Dammers, C., Yolcu, D., Kukuk, L., Willbold, D., Pickhardt, M., Mandelkow, E., Horn, A., Sticht, H., Malhis, M., Will, N., Schuster, J. and Funke, S., 2016. Selection and Characterization of Tau Binding ᴅ-Enantiomeric Peptides with Potential for Therapy of Alzheimer Disease. PLOS ONE, 11(12), p.e0167432.
Reddy Chichili, V., Kumar, V. and Sivaraman, J., 2013. Linkers in the structural biology of protein-protein interactions. Protein Science, 22(2), pp.153-167.
Lawrie, J., Song, X., Niu, W., & Guo, J. (2018). A high throughput approach for the generation of orthogonally interacting protein pairs. Scientific Reports, 8(1). doi: 10.1038/s41598-018-19281-6
Haimovitz, R., Barak, Y., Morag, E., Voronov-Goldman, M., Shoham, Y., Lamed, R., & Bayer, E. (2008). Cohesin-dockerin microarray: Diverse specificities between two complementary families of interacting protein modules. PROTEOMICS, 8(5), 968-979. doi: 10.1002/pmic.200700486
Karpol, A., Barak, Y., Lamed, R., Shoham, Y., & Bayer, E. (2008). Functional asymmetry in cohesin binding belies inherent symmetry of the dockerin module: insight into cellulosome assembly revealed by systematic mutagenesis. Biochemical Journal, 410(2), 331-338. doi: 10.1042/bj20071193
Barak, Y., Handelsman, T., Nakar, D., Mechaly, A., Lamed, R., Shoham, Y., & Bayer, E. (2005). Matching fusion protein systems for affinity analysis of two interacting families of proteins: the cohesin-dockerin interaction. Journal Of Molecular Recognition, 18(6), 491-501. doi: 10.1002/jmr.749
Fierobe, H., Mechaly, A., Tardif, C., Belaich, A., Lamed, R., & Shoham, Y. et al. (2001). Design and Production of Active Cellulosome Chimeras. Journal Of Biological Chemistry, 276(24), 21257-21261. doi: 10.1074/jbc.m102082200
Carvalho, A., Dias, F., Prates, J., Nagy, T., Gilbert, H., & Davies, G. et al. (2003). Cellulosome assembly revealed by the crystal structure of the cohesin–dockerin complex. Proceedings Of The National Academy Of Sciences, 100(24), 13809-13814. doi: 10.1073/pnas.1936124100
General modelling
Seidler, P., Boyer, D., Rodriguez, J., Sawaya, M., Cascio, D., Murray, K., Gonen, T., and Eisenberg, D., 2017. Structure-based inhibitors of tau aggregation. Nature Chemistry, 10(2), pp.170-176.
Dammers, C., Yolcu, D., Kukuk, L., Willbold, D., Pickhardt, M., Mandelkow, E., Horn, A., Sticht, H., Malhis, M., Will, N., Schuster, J. and Funke, S., 2016. Selection and Characterization of Tau Binding ᴅ-Enantiomeric Peptides with Potential for Therapy of Alzheimer Disease. PLOS ONE, 11(12), p.e0167432.
Reddy Chichili, V., Kumar, V. and Sivaraman, J., 2013. Linkers in the structural biology of protein-protein interactions. Protein Science, 22(2), pp.153-167.
Lawrie, J., Song, X., Niu, W., & Guo, J. (2018). A high throughput approach for the generation of orthogonally interacting protein pairs. Scientific Reports, 8(1). doi: 10.1038/s41598-018-19281-6
Haimovitz, R., Barak, Y., Morag, E., Voronov-Goldman, M., Shoham, Y., Lamed, R., & Bayer, E. (2008). Cohesin-dockerin microarray: Diverse specificities between two complementary families of interacting protein modules. PROTEOMICS, 8(5), 968-979. doi: 10.1002/pmic.200700486
Karpol, A., Barak, Y., Lamed, R., Shoham, Y., & Bayer, E. (2008). Functional asymmetry in cohesin binding belies inherent symmetry of the dockerin module: insight into cellulosome assembly revealed by systematic mutagenesis. Biochemical Journal, 410(2), 331-338. doi: 10.1042/bj20071193
Barak, Y., Handelsman, T., Nakar, D., Mechaly, A., Lamed, R., Shoham, Y., & Bayer, E. (2005). Matching fusion protein systems for affinity analysis of two interacting families of proteins: the cohesin-dockerin interaction. Journal Of Molecular Recognition, 18(6), 491-501. doi: 10.1002/jmr.749
Fierobe, H., Mechaly, A., Tardif, C., Belaich, A., Lamed, R., & Shoham, Y. et al. (2001). Design and Production of Active Cellulosome Chimeras. Journal Of Biological Chemistry, 276(24), 21257-21261. doi: 10.1074/jbc.m102082200
Carvalho, A., Dias, F., Prates, J., Nagy, T., Gilbert, H., & Davies, G. et al. (2003). Cellulosome assembly revealed by the crystal structure of the cohesin–dockerin complex. Proceedings Of The National Academy Of Sciences, 100(24), 13809-13814. doi: 10.1073/pnas.1936124100