Modeling
Table 1 shows the experimental data of the antibacterial ability test of five different
antimicrobial peptides. We tried different models to fit the data and found that the following model can accurately
simulate the experimental data.
f(x)=(p1x+p2 )/(x+q1) (1)
Where p_1, p_2 and q_1 are the parameters need to be determined.
Table 1. OD600 values of the five antimicrobial peptides measured at different
concentrations.
Concentration(μM) | Hydramacin-1-6His | Spheniscin-2 | LL-37 | Sparamosin 26-54 | Fusion |
---|---|---|---|---|---|
0.1 | 0.9527 | 0.950566667 | 0.957533 | 0.9635 | 0.9572 |
1 | 0.812333333 | 0.808566667 | 0.900667 | 0.940167 | 0.883133 |
2 | 0.684866667 | 0.858166667 | 0.864067 | 0.9234 | 0.881878 |
4 | 0.570133333 | 0.840466667 | 0.817233 | 0.896633 | 0.851444 |
6 | 0.518966667 | 0.755133333 | 0.714233 | 0.8241 | 0.764489 |
8 | 0.433133333 | 0.6409 | 0.640467 | 0.807067 | 0.696144 |
10 | 0.4179 | 0.674366667 | 0.601267 | 0.7796 | 0.685078 |
15 | 0.2364 | 0.616166667 | 0.577733 | 0.672467 | 0.622122 |
20 | 0.112166667 | 0.569466667 | 0.533833 | 0.6305 | 0.577933 |
25 | 0.504566667 | 0.514433 | 0.630033 | 0.549678 | |
50 | 0.362966667 | 0.2645 | 0.524167 |
Coding
Below is the code for our calculation of the model (1) in MATLAB:
clear;clc
AA=importdata('Table1.txt');
con=AA(:,1);
c_20=con(1:9);
c_25=con(1:10);
c_50=con;
hyd=AA(:,2);hyd=hyd(1:9);
sph=AA(:,3);
LL=AA(:,4);
spa=AA(:,5);
fusion=AA(:,6);fusion=fusion(1:10);
%
p1=[-0.2963 0.1248 0.0656 0.3266 0.3097];
p2=[10.62 21.04 18.24 19.88 13.6];
q1=[11.56 23.11 19.29 20.32 14.25];
x=0:0.05:500;
y1=(p1(1)*x+p2(1))./(x+q1(1));
y2=(p1(2)*x+p2(2))./(x+q1(2));
y3=(p1(3)*x+p2(3))./(x+q1(3));
y4=(p1(4)*x+p2(4))./(x+q1(4));
y5=(p1(5)*x+p2(5))./(x+q1(5));
%
figure,plot(x,y1,'-')
hold on, plot(c_20,hyd,'s'),xlim([0 25])
%
figure,plot(x,y2,'-')
hold on, plot(c_50,sph,'d'),xlim([0 55])
%
figure,plot(x,y3,'-')
hold on, plot(c_50,LL,'p'),xlim([0 55])
%
figure,plot(x,y4,'-')
hold on, plot(c_50,spa,'o'),xlim([0 55])
%
figure,plot(x,y5,'-')
hold on, plot(c_25,fusion,'h'),xlim([0 30])
Model Results:
1. Hydramacin-1-6His
Figure 1. Fitting results of Hydramacin-1-6His
Coefficients (with 95% confidence bounds):
p1 = -0.2963 (-0.7429, 0.1502)
p2 = 10.62 (2.431, 18.82)
q1 = 11.56 (1.929, 21.2)
Goodness of fit:
SSE: 0.01202
R-square: 0.9788
Adjusted R-square: 0.9717
RMSE: 0.04476
p1 = -0.2963 (-0.7429, 0.1502)
p2 = 10.62 (2.431, 18.82)
q1 = 11.56 (1.929, 21.2)
Goodness of fit:
SSE: 0.01202
R-square: 0.9788
Adjusted R-square: 0.9717
RMSE: 0.04476
2. Spheniscin-2
Figure 2. Fitting results of Spheniscin-2
Coefficients (with 95% confidence bounds):
p1 = 0.1248 (-0.1875, 0.4371)
p2 = 21.04 (2.966, 39.12)
q1 = 23.11 (2.193, 44.03)
Goodness of fit:
SSE: 0.0144
R-square: 0.9522
Adjusted R-square: 0.9402
RMSE: 0.04243
p1 = 0.1248 (-0.1875, 0.4371)
p2 = 21.04 (2.966, 39.12)
q1 = 23.11 (2.193, 44.03)
Goodness of fit:
SSE: 0.0144
R-square: 0.9522
Adjusted R-square: 0.9402
RMSE: 0.04243
3. LL-37
Figure 3. Fitting results of LL-37
Coefficients (with 95% confidence bounds):
p1 = 0.0656 (-0.1894, 0.3206)
p2 = 18.24 (6.142, 30.33)
q1 = 19.29 (5.647, 32.93)
Goodness of fit:
SSE: 0.01348
R-square: 0.9678
Adjusted R-square: 0.9597
RMSE: 0.04104
p1 = 0.0656 (-0.1894, 0.3206)
p2 = 18.24 (6.142, 30.33)
q1 = 19.29 (5.647, 32.93)
Goodness of fit:
SSE: 0.01348
R-square: 0.9678
Adjusted R-square: 0.9597
RMSE: 0.04104
4. Sparamosin 26-54
Figure 4. Fitting results of Sparamosin 26-54
Coefficients (with 95% confidence bounds):
p1 = 0.3266 (0.201, 0.4523)
p2 = 19.88 (11.11, 28.64)
q1 = 20.32 (10.95, 29.69)
Goodness of fit:
SSE: 0.002975
R-square: 0.9864
Adjusted R-square: 0.9829
RMSE: 0.01928
p1 = 0.3266 (0.201, 0.4523)
p2 = 19.88 (11.11, 28.64)
q1 = 20.32 (10.95, 29.69)
Goodness of fit:
SSE: 0.002975
R-square: 0.9864
Adjusted R-square: 0.9829
RMSE: 0.01928
5. Fusion
Figure 5. Fitting results of Fusion
Coefficients (with 95% confidence bounds):
p1 = 0.3097 (0.1204, 0.499)
p2 = 13.6 (4.785, 22.41)
q1 = 14.25 (4.63, 23.87)
Goodness of fit:
SSE: 0.003162
R-square: 0.9826
Adjusted R-square: 0.9776
RMSE: 0.02125
p1 = 0.3097 (0.1204, 0.499)
p2 = 13.6 (4.785, 22.41)
q1 = 14.25 (4.63, 23.87)
Goodness of fit:
SSE: 0.003162
R-square: 0.9826
Adjusted R-square: 0.9776
RMSE: 0.02125
Model Prediction
We used the model (1) to predict the OD600 values of the five antimicrobial
peptides at which the concentration would reach zero.
Figure 6. OD600 values of the five antimicrobial peptides varying with concentration predicted by
the model.
Conclusion
According to the above simulation results (Figure 1~5), our model (1) can accurately
simulate the experimental data (R-squares of the fitting results are higher than 0.95). Therefore, we used the model
(1) to predict the antibacterial effect (OD600 values) of the five antimicrobial peptides varying with
concentration. As shown in Figure 6, when the concentration of Hydramacin-1-6His approached 35.8μM, the
OD600 value
would decrease to 0. In contrast, the OD600 values of other antimicrobial peptides can hardly be reduces
to 0 even
when the concentration is increased to a high level.