From the very beginning, it was clear to us that we wanted to respect the values of inclusivity and diversity throughout our project. In our opinion, it’s of utmost importance to create a welcoming and open science community for everyone to participate. The issues with diversity and inclusion are easily bypassed, and we considered this special prize criterion an amazing opportunity for us to dive a bit deeper into understanding current problems. It is, indeed, crucial to understand the problems and underlying reasons rather than just thinking that something is happening. Thus, we did thorough research on the literature as well as prior activities related to inclusivity. Science can sometimes be complex and difficult to understand, but we wanted to show that it can also be simplified for the broader public regardless of their disabilities.

Team Diversity and Inclusivity

One important aspect of diversity and inclusion is to accept all kinds of people to take part in the competition, regardless of their background or, for example, disabilities. We welcomed people from different genders, ethnicities, age groups, academic backgrounds, and identities to join the ABOA team. Throughout the project, we wanted to give every team member the freedom to express their opinions without judgment or underestimation. Everyone was also able to participate in all the activities and subteams they wanted regardless of their prior experience of it and to use their own creativity in the responsibilities. We changed our weekly meeting times from time to time based on team member availabilities, so that everyone was able to participate in common activities and meetings. In addition, we provided a chance to attend remotely to our meetings even after the hardest time of the pandemic was over. As one of our core values is well-being, we also wanted to create an open and safe environment to tell if the workload is too huge and if someone feels overwhelmed. In those situations, members were encouraged to take a break and concentrate on self-care. In addition to previously described facts, we wanted everyone in the team to have an equal opportunity to attend the Grand Jamboree in Paris, regardless of socioeconomic status or financial situation. This was achieved by working hard to get sponsors to support us on our journey!

ABOA team members in a park
Figure 1. ABOA team members.

Website and Wiki accessibility

As we wanted from the very beginning to take inclusivity into account, we decided to make all of our materials and communication channels as accessible as possible. On our website and wiki, we used a simple and big enough text font that wouldn’t look crowded for example in the eyes of dyslexic people. In addition, we provided detailed alternative texts to all figures used on our website and wiki to enable screen readers to read them for visually impaired people (Fig. 2). Our figure texts also included comprehensive descriptions for pictures to allow everyone to understand even the most complex pictures - even though we made our best to create as simple and easily understandable pictures as possible. In our opinion, it’s also a lot easier to explain some science-related things and concepts with the help of visual aid and pictures, which is why we tried to use them as much as possible.

A picture of one result figure and, next to it, a picture of our code in which we provide a detailed description of the results in the alternative text.
Figure 2. An example of the alternative text for one result figure.

In addition to dyslexic and visually impaired people, we also wanted to take people with color blindness into consideration. This was one thing we hadn’t even thought about before this year’s iGEM project, so we enthusiastically sought more information, for example about different forms of color blindness. Color blindness refers to an inability to see and distinguish colors normally (National Eye Institute, 2019). It is often a heritable but quite common state, affecting 1 in 12 men and 1 in 200 women (Elrefaei, 2018; National Eye Institute, 2019). Color blindness can be divided into three subcategories depending on the cause; monochromacy, dichromacy, and anomalous trichromacy. Monochromacy is a rare situation in which a person can not see any colors, only shades of grey. Dichromacy, in turn, is an inability to see red, green, or blue, depending on the damaged eye cell type. The third form, anomalous trichromacy, is the mildest version, and it is classified as a state in which a person is less sensitive to some of three colors - red, green, or blue. In those cases, the ability to see and distinguish colors can range between a fully normal ability to distinguish colors and a total absence of color vision. (Elrefaei, 2018.)

The most common types of color blindness, defined by the affected colors, are red-green color blindness and blue-yellow blindness. People suffering from protanopia and deuteranopia can not tell the difference between red and green at all. People with tritanopia, in turn, are unable to distinguish blue and green, purple and red, and yellow and pink. This condition is, however, much rarer than different forms of red-green color blindness. (National Eye Insitute, 2019.) To maintain the understandability of the information shown on our wiki pages, we were extra careful to prevent using red and green or blue and yellow in the same figures in our wiki. Another thing we took into account when planning the wiki figures was not to use only colors in our result graphs, but also to display differences with the help of different symbols, such as dots, squares, and trigons. In that way, the message of the graph could be communicated also to people with total color blindness or monochromacy. To ensure that our wiki is accessible for people with any type of color blindness and that all information is still communicated clearly, we finally checked it with both the Toptal tool ( and the Chrome web developer (Fig. 3).

Figure 3. Our wiki front page through the eyes of people with different types of color blindness. A) Normal, B) Monochromacy, C) Protanopia, D) Deuteranopia, E) Tritanopia.

We found an amazing guide on how to create an accessible wiki, created by the iGEM team Marburg 2018. We wanted to utilize it in our own project and took all the things introduced in the guide into consideration when coding our wiki. Some things we had thought about already before finding this guide, such as keeping high contrast between the background color and the text color. However, we also learned a lot of new information about accessibility, such as that font sizes, distances, and areas should be set by using percentages (%) and “em” as units rather than for example pixels (px). The reason for that is that those units are relative and not absolute; thus, they can be adjusted. Other things mentioned in the Marburg guide, that were taken into account when coding our wiki, were the object types and colorless changes. In other words, we are expressing headers as header tags (h1, h2, etc.) and lists as list tags (ul and li), and emphasizing words with for example bolding rather than changing the color.

Project Inclusivity

We welcomed all kinds of people from different backgrounds to our team and tried to create a highly accessible wiki. Still, in addition to that, we also aimed to create as inclusive a project as possible. When it comes to the proposed implementation of our project, our end product would be simple, easy to use, and affordable, without the need for special laboratory equipment or expertise. That would enable its usage also in low-income countries, as well as in the countryside, where these kinds of innovations are commonly not available. The color change in the final test, visible by the naked eye, would be chosen so that it can not be misinterpreted due to abnormal color sensing ability. The reporter proteins used in our experimental work so far, β-galactosidase and mScarlet-I, produce a yellow and pink signal, respectively (Bindels et al, 2017; Miller, 1972). However, in our final product, we could use chlorophenol red-beta-D-galactopyranoside (CPRG) as a substrate for β-galactosidase instead of o-nitro-phenyl-beta-D-galactopyranoside (ONPG) which we have now used. In that way, we could expect the color to be dark red instead of yellow, which could further facilitate observing it regardless of difficulties in color sensing (Fig. 4). (Hosseini & Mas, 2021.) To conclude, our final product would most likely have either mScarlet-I or β-galactosidase with the substrate CPRG as a reporter protein because they can be interpreted correctly also by people with color blindness.

Figure 4. The colors of reporter proteins through the eyes of people with different types of color blindness. Colors are represented in different shades, to find out if all of them are visible reliably. A) Normal, B) Monochromacy, C) Protanopia, D) Deuteranopia, E) Tritanopia. β-galactosidase with the substrate ONPG can not be reliably distinguished from the negative control when having monochromacy or tritanopia. ONPG = o-nitro-phenyl-beta-D-galactopyranoside, CPRG = chlorophenol red-beta-D-galactopyranoside.

To allow more people to understand the basic idea of our project, we wrote a brief summary in English and translated it into 23 other languages, including Finnish, Hebrew, Portuguese, and Ukrainian.


تشكل مسببات الأمراض النباتية تهديدًا خطيرًا للأمن الغذائي العالمي ، حيث تسبب أمراضًا نباتية يمكن أن تدمر إنتاج المحاصيل بأكملها. يوفر CropFold نظامًا سهلًا وبأسعار معقولة للكشف عن مسببات الأمراض في الموقع ، والذي يمكن استخدامه بدون أي معدات خاصة أو حتى خبرة. يمكن تعديل النظام للكشف عن مختلف مسببات الأمراض السائدة عالميًا.




Rostlinné patogeny představují vážnou hrozbu pro celosvětovou potravinovou bezpečnost, protože způsobují choroby rostlin, které mohou zničit i celou úrodu. CropFold nabízí snadný a cenově dostupný systém detekce patogenů na místě, který lze používat bez jakéhokoli speciálního vybavení nebo odborných znalostí. Systém lze modifikovat pro různé patogeny, které jsou rozšířené po celém světě.


Plantepatogener er en alvorlig trussel for den globale fødevaresikkerhed, da de forårsager plantesygdomme, der kan ødelægge hele høster af afgrøder. CropFold tilbyder et let og økonomisk overkommeligt system til påvisning af patogener på stedet, som kan bruges uden særligt udstyr eller ekspertise. Systemet kan modificeres til test af forskellige patogener, der er ofte forekommer globalt set.


Plantpathogenen vormen een ernstige bedreiging voor de wereldwijde voedselzekerheid, omdat ze plantenziekten veroorzaken die zelfs hele gewasopbrengsten kunnen vernietigen. CropFold biedt een eenvoudige, betaalbare on-site pathogenendetectiesysteem, dat zonder speciale apparatuur of expertise kan worden gebruikt. Het systeem kan worden aangepast voor verschillende, wereldwijd voorkomende, ziekteverwekkers.


Plant pathogens are a serious threat to global food security, causing plant diseases that can destroy even whole crop yields. CropFold offers an easy, affordable on-site pathogen detection system, which can be used without any special equipment or expertise. The system can be modified for different pathogens that are prevalent globally.


Kasvien patogeenit ovat uhka ruokaturvalle kaikkialla maailmassa, sillä ne aiheuttavat kasvitauteja, jotka voivat tuhota jopa koko sadon. CropFold tarjoaa helpon ja edullisen tavan tunnistaa taudinaiheuttajia, ja sitä voidaan käyttää paikan päällä pelloilla ilman erityisiä välineitä tai erityistaitoja. Menetelmää voidaan myös muokata niin, että se tunnistaa muualla maailmalla yleisiä taudinaiheuttajia.


Les agents pathogènes des plantes constituent une menace sérieuse pour la sécurité alimentaire mondiale. Les maladies causées par ces derniers peuvent en effet aller jusqu'à détruire la production de cultures entières. Avec CropFold, nous proposons un système de détection de ces agents pathogènes utilisable directement dans le champ, abordable, et qui peut être utilisé sans équipement spécial ni expertise. Le système peut être adapté pour différents agents pathogènes répandus dans le monde.


Pflanzenpathogene sind eine ernsthafte Bedrohung für die weltweite Lebensmittelsicherheit. Sie verursachen Pflanzenkrankheiten, die sogar ganze Ernteerträge vernichten können. CropFold bietet ein einfaches, erschwingliches System zur Erkennung von Krankheitserregern vor Ort, das ohne spezielle Laborgerät oder Expertise verwendet werden kann. Das System kann für verschiedene, weltweit verbreitete Krankheitserreger angepasst werden.


Τα φυτοπαθογόνα αποτελούν σοβαρή απειλή για την παγκόσμια επισιτιστική ασφάλεια, καθώς προκαλούν ασθένειες των φυτών που μπορούν να καταστρέψουν ακόμη και ολόκληρες αποδόσεις καλλιεργειών. Το CropFold προσφέρει ένα εύκολο, προσιτό σύστημα επιτόπιας ανίχνευσης παθογόνων μικροοργανισμών, το οποίο μπορεί να χρησιμοποιηθεί χωρίς ειδικό εξοπλισμό ή τεχνογνωσία. Το σύστημα μπορεί να τροποποιηθεί για διάφορα παθογόνα που είναι διαδεδομένα παγκοσμίως.


מזיקי צמחים הם איום חמור על בטחון תזונתי וגורמים למחלות צמחים שיכולות להשמיד יבולים חקלאיים. CropFold מציעה מערכת לזיהוי מזיקים במקום, אשר ניתן להשתמש בה ללא צורך בציוד ייחודי או ידע קודם. ניתן להתאים את המערכת לטיפול במזיקים שונים ונפוצים ברחבי העולם.


A növényi kórokozók komoly fenyegetést jelentenek a globális élelmezésbiztonságra, mivel olyan növénybetegségeket okoznak, amelyek akár egész terméshozamokat is tönkretehetnek. A CropFold egy egyszerű, megfizethető helyszíni kórokozó felismerő rendszert kínál, amely speciális felszerelés vagy szakértelem nélkül használható. A rendszer módosítható különböző, világszerte elterjedt kórokozókkal szemben.


Plöntusýklar eru mikil ógn við fæðuöryggi á heimsmælikvarða, en þeir valda sjúkdómum í plöntum sem geta jafnvel skemmt heilu akrana. CropFold býður upp á kerfi til að greina plöntusýkla á akrinum sjálfum sem er bæði einfalt og ódýrt í notkun. Kerfið má nota án sérstaks búnaðar eða sérþekkingar. Það má svo aðlaga að ólíkum sýklum sem eru ríkjandi á ökrum heimsins.


Patogen pada tanaman merupakan ancaman serius bagi ketahanan pangan global, hal tersebut dapat menyebabkan penyakit pada tanaman yang dapat menghancurkan sebagian bahkan seluruh hasil panen. CropFold menawarkan sistem deteksi patogen di tempat yang mudah dan terjangkau, serta dapat digunakan tanpa peralatan atau keahlian khusus. Sistem ini dapat dimodifikasi untuk berbagai patogen yang lazim secara global.


Gli agenti patogeni delle piante rappresentano una grave minaccia per la sicurezza alimentare globale, in quanto causano malattie delle piante che possono distruggere anche le rese di intere colture. CropFold offre un sistema di rilevamento dei patogeni in loco facile ed economico, che può essere utilizzato senza attrezzature o competenze particolari. Il sistema può essere modificato per diversi patogeni diffusi a livello globale.


Augalų patogenai kelia rimtą grėsmę pasauliniam maisto saugumui, nes sukelia augalų ligas, kurios gali sunaikinti visą derlių. „CropFold“ siūlo paprastą ir nebrangią patogenų aptikimo sistemą, kurią galima naudoti tiesiogiai pasėliuose be jokios specialios įrangos ar žinių. Sistemą taip pat galima modifikuoti įvairiems pasaulyje paplitusiems patogenams nustatyti.


Patogeny roślinne stanowią poważne zagrożenie dla światowego bezpieczeństwa żywnościowego, powodując choroby roślin, które mogą zniszczyć nawet całe plony. CropFold oferuje łatwy, niedrogi system wykrywania patogenów na miejscu, który może być używany bez specjalistycznego sprzętu lub wiedzy. System może być modyfikowany dla różnych patogenów, które są rozpowszechnione na całym świecie.


Os agentes patogénicos nas plantas constituem uma grande ameaça à segurança alimentar global, provocando doenças nas plantas que podem chegar a destruir culturas inteiras. CropFold oferece um sistema fácil e acessível de deteção de agentes patogénicos no local, que pode ser utilizado sem qualquer equipamento ou perícia especial. O sistema pode ser modificado para diferentes agentes patogénicos que são prevalecentes a nível global.


Патогены растений представляют собой серьезную угрозу глобальной продовольственной безопасности, вызывая болезни растений, которые могут уничтожить весь урожай. CropFold предлагает простую и доступную систему обнаружения патогенов в полевых условиях, которую можно использовать без специального оборудования или опыта. Система может быть модифицирована для различных патогенов, распространенных во всем мире.


Rastlinski patogeni resno ogrožajo svetovno prehransko varnost, saj povzročajo rastlinske bolezni, ki lahko uničijo celo celoten pridelek. CropFold ponuja enostaven in cenovno dostopen sistem za odkrivanje patogenov na kraju samem, ki ga je mogoče uporabljati brez posebne opreme ali strokovnega znanja. Sistem je mogoče prilagoditi za različne patogene, ki so razširjeni po vsem svetu.


Los patógenos de plantas son una grave amenaza para la seguridad alimentaria mundial, ya que causan enfermedades de plantas que pueden destruir el rendimiento de toda la cosecha. CropFold ofrece un sistema de detección de patógenos in situ, fácil y accesible, que no requiere ningún equipo especial ni conocimientos técnicos. El sistema puede modificarse para diferentes patógenos frecuentes en todo el mundo.


Växtpatogener är ett allvarligt hot mot den globala livsmedelssäkerheten eftersom de orsakar växtsjukdomar som kan förstöra hela skördar. CropFold erbjuder ett enkelt och prisvärt system för att upptäcka patogener på plats, som kan användas utan särskild utrustning eller expertis. Systemet kan modifieras för olika patogener som är vanligt förekommande globalt.


தாவர நோய்க்கிருமிகள் உலகளாவிய உணவுப் பாதுகாப்பிற்கு ஒரு தீவிர அச்சுறுத்தலாக இருக்கின்றன, இதனால் தாவர நோய்கள் முழு பயிர் விளைச்சலைக் கூட அழிக்கக்கூடும். CropFold குறைந்த செலவிலும் எளிதான முறையிலும் நேரடியாக தளத்தில் நோய்க்கிருமி கண்டறிதல் அமைப்பை வழங்குகிறது. உலகளவில் பரவலாக இருக்கும் பல்வேறு நோய்க்கிருமிகளைக் இந்த கண்டறியும் அமைப்பை மாற்றியமைக்க முடியும்.


Рослинні патогени становлять серйозну загрозу глобальній продовольчій безпеці, викликаючи хвороби рослин, які можуть знищити увесь врожай сільськогосподарських культур. CropFold пропонує просту, доступну систему виявлення патогенів на місці, яку можна використовувати без спеціального обладнання та досвіду. Система може бути модифікована для різних патогенів, поширених у світі.

In addition to translated project descriptions, we wanted to provide also a really simple project description in plain language to allow also people with understanding difficulties to understand it:

Plants getting ill is a problem. Sick plants cannot be eaten or sold. We made a test to show if plants are healthy. The test is easy to use and cheap.

In addition to these activities, our promotion video, educational material, and part of our TikTok videos are provided also in Finnish, to promote the Finnish people's understanding of them and to attract even more Finns to join the scientific community. In addition, it helps us to communicate our project and science wider in our local community, to children and elderly people, because their language skills are often worse, and even nowadays they don’t always understand English.


  • Bindels, D. S., Haarbosch, L., van Weeren, L., Postma, M., Wiese, K. E., Mastop, M., Aumonier, S., Gotthard, G., Royant, A., Hink, M. A., Gadella Jr, T. W. J. (2017). mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nature Methods, 14, 53-56.

  • Elrefaei, L. A. (2018). Smartphone Based Image Color Correction for Color Blindness. International Journal of Interactive Mobile Technologies (iJIM), 12(3), pp. 104–119.

  • Hosseini, A. & Mas, J. (2021). The β-galactosidase assay in perspective: Critical thoughts for biosensor development. Analytical biochemistry, 635, 114446.

  • Marburg 2018 iGEM team.

  • Miller, J. (1972). Experiments in Molecular Genetics. Cold Spring Harbor NY: Cold Spring Harbor Laboratory

  • National Eye Institute. (2019). Color Blindness. Retrieved from