Biosensor #1: Heat shock-inducible Promoter
Heat shock-inducible promoter activity in C. vulgaris is tested by
observing GFP expression. The fluorescence intensity was compared
with control.
pHsp70A > Kozak > egfp > Tnos
a. Incubation in the dark and shifted into the light for 1
h.
b. Incubation in the light and exposed to heat shock (40°C)
for 30 min.
p35S > Kozak > eGFP > Tnos (Control)
Biosensor #1-2: Cold-inducible Promoter
Cold-inducible promoter activity in C. vulgaris is tested by
observing GFP expression. The fluorescence intensity was compared
with control.
pCnAFP>Kozak>eGFP>Tnos
a. Incubation in low temperature (10°C) for 2 hour.
p35S>Kozak>eGFP>Tnos (Control)
Biosensor #2: Bioswitch: Inducible Promoter - Recombinase
Activity
Recombinase activity, triggered by inducible promoters, is tested
by observing GFP expression. The fluorescence intensity was
compared with control.
p35S>attB>mCherry>Tnos : pHSP70A>Kozak>phiC31>Tnos :
attP>Kozak>eGFP>Tnos
(Heat shock inducible promoter + phiC31 recombinase)
- After recombination : p35S > attB-attP > Kozak > eGFP >
Tnos
a. Incubation in the dark and shifted into the light for 1 h.
b. Incubation in the light and exposed to heat shock (40°C)
for 30 min.
p35S>attB>mCherry>Tnos : pCnAFP>Kozak>phiC31>Tnos :
attP>Kozak>eGFP>Tnos
(Cold inducible promoter + phiC31 recombinase)
- After recombination : p35S > attB-attP > Kozak > eGFP >
Tnos
a. Incubation in low temperature (10°C) for 2 hours.
p35S>loxP(1)>mCherry>Tnos : pHSP70A>Kozak>Cre>Tnos :
loxP(2)>Kozak>eGFP>Tnos
(Heat shock inducible promoter + Cre recombinase)
- After recombination : p35S > loxP(1)-loxP(2) > Kozak > eGFP
> Tnos
a. Incubation in the dark and shifted into the light for 1 h.
b. Incubation in the light and exposed to heat shock (40°C)
for 30 min.
p35S>loxP(1)>mCherry>Tnos : pCnAFP>Kozak>Cre>Tnos :
loxP(2)>Kozak>eGFP>Tnos
(Cold inducible promoter + Cre recombinase)
- After recombination : p35S > loxP(1)-loxP(2) > Kozak > eGFP
> Tnos
a. Incubation in low temperature (10°C) for 2 hours.
p35S>eGFP>nos terminator (Control)
Biosensor #3: Quorum-Sensing Promoter & Protein
Quorum-Sensing promoter activity in C. vulgaris is tested by
observing GFP expression. The expression is observed in various
concentrations of N-3-oxo-octanoyl homoserine lactone (C8 AHL).
The observation is made in liquid medium with 0 μM, 0.1 μM, 1 μM,
100μM, 1000 μM, 10000 μM C8 AHL. The fluorescence intensity was
compared with control.
p4X(TraR)::m35S>Kozak>eGFP>Tnos : pHSP70A/pRbcS2>Kozak>VP16
TAD::TraR>Tnos
p4X(TraR)::m35S>Kozak>eGFP>Tnos : p35S>Kozak>VP16 TAD::TraR>Tnos
p35S>Kozak>eGFP>Tnos (Control)
Experiment Protocol
Microalgae Transformation (Cha et al., 2012)
-
The mediums and supplements for microalgae transformation are
obtained from Kisan Bio, South Korea.
-
1. Supplement Luria Broth with 5 mM glucose, 50 mg/L kanamycin
-
2. Inoculate Agrobacterium. Tumefaciens (KCTC 12031) single
colonies in 10mL of Luria Broth
-
3. Under constant agitation at 200 rpm on a rotary shaker at
30°C, culture overnight in the dark
-
4. Inoculate 5mL of overnight culture from step 3 in 50mL of
same medium
-
5. Under constant agitation at 200 rpm at 27°C, culture until
OD600 = 0.8–1.2 in the dark
- 6. Centrifuge to harvest bacterial culture
-
7. Wash with induction medium (BG11 + 100 μM acetosyringone,
pH 5.6) and dilute to OD600 = 0.5
-
8. Pre-culture total of 5 × 106 Chlorella cells from a
log-phase culture (OD600 = 0.5–1.0) on BG11 solidified with
1.5% (w/v) bacto-agar at 25°C for 5 days
- 9. Harvest bacterial culture with induction medium
- 10. Mix algal pellet with 200 μL bacterial suspension
-
11. Plate on induction medium solidified with 1.5% (w/v)
bacto-agar
-
12. Co-cultivate algae with bacteria (3 days, in dark, 25°C)
-
13. Harvest cells with 7mL of BG11 supplemented with 500 mg/L
cefotaxime and 50 mg/L kanamycin to eliminate Agrobacterium (2
days, in dark, 25°C)
- 14. Measure eGFP expression
-
15. Plate the remaining cells on selective media with 50 mg/L
kanamycin and 500 mg/L cefotaxime
-
16. Incubate transformed cells in dark before exposure to
light (2 days, 25°C)
-
17. Grow cells on LB agar plates to detect any Agrobacterium
(7 days in dark, 25°C)
Fluorescence microplate reader assay (Molino et al.,
2018)
-
1. Inoculate transformed colony in 1mL BG11 selective media
and incubate at 25°C under constant illumination
(50 μmol photons/m2/s) and constant agitation at 100–150 rpm
on a rotary shaker, culture for 7 days
-
2. Transfer 100 μL cells to wells of a black, clear bottom
96-well plate
-
3. Set up microplate reader (ThermoFisher Scientific, USA) as
table 1
-
4. Measure fluorescence using BG11 medium as blank and wild
type cells as negative control
-
5. Repeat steps 5-7 with supernatant in the Deep-well plate
obtained by centrifugation at 3000 ×g for 10 min
- 6. The fluorescent signal is normalized by OD600.
Fluorescence microscopic observation of EGFP expression
(Yang et al., 2015)
-
The mediums and supplements for microalgae transformation are
obtained from Kisan Bio, South Korea.
-
- eGFP fluorescence was visualized by using a narrow-band
filter (Olympus U-FBNA, excitation filter 470–495 nm, barrier
filter 510–550 nm).
-
- Chlorophyll autofluorescence was observed using a wide-band
filter (Olympus U-FBW, excitation filter 460–495 nm, barrier
filter 510 nm)
References
Cha, T. S., Yee, W., & Aziz, A. (2011, December 29). Assessment
of factors affecting Agrobacterium-mediated genetic
transformation of the unicellular green alga, Chlorella
vulgaris. World Journal of Microbiology and Biotechnology,
28(4), 1771–1779. https://doi.org/10.1007/s11274-011-0991-0
Kim, M., Kim, J., Kim, S., & Jin, E. (2020). Heterologous Gene
Expression System Using the Cold-Inducible CnAFP Promoter in
Chlamydomonas reinhardtii. Journal of Microbiology and
Biotechnology, 30(11), 1777–1784.
https://doi.org/10.4014/jmb.2007.07024
Kropat, J., von Gromoff, E. D., Müller, F. W., & Beck, C. F.
(1995). Heat shock and light activation of Achlamydomonas HSP70
gene are mediated by independent regulatory pathways. Molecular
and General Genetics MGG, 248(6), 727–734.
https://doi.org/10.1007/bf02191713
Molino, J. V., de Carvalho, J. C., & Mayfield, S. (2018).
Evaluation of secretion reporters to microalgae biotechnology:
Blue to Red Fluorescent Proteins. Algal Research, 31, 252–261.
https://doi.org/10.1016/j.algal.2018.02.018
Reyes, A., Farías, M. A., Corrales, N., Tognarelli, E., &
González, P. A. (2022). Herpes simplex viruses type 1 and type
2. Encyclopedia of Infection and Immunity, 12–36.
https://doi.org/10.1016/b978-0-12-818731-9.00062-8
Sauer, B., & Henderson, N. (1988). Site-specific DNA
recombination in mammalian cells by the cre recombinase of
bacteriophage P1. Proceedings of the National Academy of
Sciences, 85(14), 5166–5170.
https://doi.org/10.1073/pnas.85.14.5166
Thomson, J. G., Chan, R., Thilmony, R., Yau, Y.-Y., & Ow, D.
W. (2010). PHIC31 recombination system demonstrates heritable
germinal transmission of site-specific excision from the
Arabidopsis genome. BMC Biotechnology, 10(1), 17.
https://doi.org/10.1186/1472-6750-10-17
Yang, B., Liu, J., Liu, B., Sun, P., Ma, X., Jiang, Y., Wei, D.,
& Chen, F. (2015). Development of a stable genetic system
for chlorella vulgaris—a promising green alga for CO2
biomitigation. Algal Research, 12, 134–141.
https://doi.org/10.1016/j.algal.2015.08.012
You, Y. S., Marella, H., Zentella, R., Zhou, Y., Ulmasov, T.,
Ho, T. H. D., & Quatrano, R. S. (2006). Use of Bacterial
Quorum-Sensing Components to Regulate Gene Expression in Plants.
Plant Physiology, 140(4), 1205–1212.
https://doi.org/10.1104/pp.105.074666