INCLUSIVE - database

INCLUSIVE - a database for non-canonical amino acids, their aminoacyl tRNA synthetases, and complementary tRNA

At the beginning of our iGEM journey, we found ourselves struggling to find relevant ncAA for incorporation in the chAMBER system since extensive literature research was required before starting experiments with any ncAA. To facilitate our colleagues and fellow iGEMers a much easier start working with the exciting field of ncAA, we developed INCLUSIVE. INCLUSIVE stands for "Incorporation of Non-CanonicaL amino acids to Utilize SIde chains with VErsatility", and is a database that provides a complete listing of relevant non-canonical amino acids (ncAAs) complemented with all information needed to work with them, allowing you to find a ncAA that suits your needs quickly and easily! For every ncAA listed, you will find a fitting aminoacyl tRNA synthetase (aaRS) which recognizes the ncAA and loads it onto an orthogonal tRNA, meaning that it works in parallel to other aaRS/tRNA pairs in the organism of interest. Orthogonal translation systems ensure neither the aaRS nor the tRNA cross-react with other aaRSs or tRNAs in the cell. Additionally, you will find information on what organisms the different aaRSs/tRNAs originate from, the chemical formula for the ncAA, an abbreviation (also useful for our software), the mutations introduced into the aaRS to make it recognize the ncAA, the peptide sequence for the aaRS, the sequence of the tRNA, and, of course, the authors/title of the related paper and the DOI.

Fulfilling the upcoming need for a structured listing of ncAAs

Not only is the database necessary, as it can be a very opaque subject to work with, but the amount of ncAAs that can be built in is increasing annually.

Fig 1: The google scholar search terms over the timespan of 22 years compared to overall search terms for the different years.

As seen in figure 1, the figure shows the rapid growth of publications in this field. A fact that makes the field even more complicated to work with is the variation of termini used to refer to the ncAA. We have found various names, like non-canonical, unnatural, non-standard. We decided to consistently use the term non-canonical, as this describes them as the direct counterpart of the 21 canonical amino acids, in an approach to homogenise the naming of the field. The growth shown in figure 1 has been exponentially accelerating over the last decades, and we think it is likely due to the seemingly endless possibilities genetic code extension and unnatural base pairs harbour. The growing interest undermines the necessity to collect all available information and make it accessible, for example by setting up a hub as a contact point, which will also be updated over time. With our INCLUSIVE database, we present a prototype for such a database, which will simplify and speed up research with ncAAs.

Our database in detail

It was incredibly time-consuming to find all the papers on the one hand and, on the other hand, to find data that complemented the paper: most papers, of course, mention the amino acid that was incorporated and the mutation of the synthetase, however, do not note the sequence of the tRNA but refer to other papers, which can end in a deep rabbit hole.

ID AA abbreviation Amino acid Synonyms Molecular Formula Derivative Function Origin aaRS aaRS name Mutation Mutated aaRS sequence aaRS organism tRNA name tRNAseq Codon in tRNA tRNA organism test in DOI Publication
1 Anap 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid - C15H16N2O3 Prodan fluorescent probes, enhances environmental sensitivity with comparable or increased brightness EcLeuRS EcAnapRS L38F, M40G, L41P, Y499V, Y500L, Y527A, H537E, L538S, F541C, A560V Fasta Escherichia coli E. coli derived tRNA CUA EcLeu GCCCGGAUGGUGGAAUCGGUAGACACAAGGGAUUCUAAAUCCCUCGGCGUUCGCGCUGUGCGGGUUCAAGUCCCGCUCCGGGUACCA CUA Escherichia coli Sacharomyces cerevisiae https://doi.org/10.1021/ja4059553 Chatterjee, A., Guo, J., Lee, H.S., and Schultz, P.G. (2013). A genetically encoded fluorescent probe in mammalian cells. J. Am. Chem. Soc. 135, 12540-12543.
2 CouA (S)-1-carboxy-3-(7-hydroxy-2-oxo-2H-chromen-4-yl)propan-1-aminium L-(7-hydroxycoumarin-4-yl) ethylglycine C13H13N1O3 Coumarin - MjTyrRS MjCouRS Y32E, L65H, A67G, H70G, F108Y, Q109H, D158G, L162G Fasta Methanocaldococcus jannaschii Mj tRNA Tyr CUA CCGGCGGUAGUUCAGCAGGGCAGAACGGCGGACUCUAAAUCCGCAUGGCAGGGGUUCAAAUCCCCUCCGCCGGACCA CUA Methanocaldococcus jannaschii Escherichia coli https://doi.org/10.1021/ja062666k Wang, J., Xie, J., & Schultz, P. G. (2006). A genetically encoded fluorescent amino acid. Journal of the American Chemical Society, 128(27), 8738-8739.
3 dansyl-d,l-alanine 3-(5-(dimethylamino)naphthalene-1-sulfonamide) propanoic acid Dansylalanine C15H19N3O4S Dansyl chloride fluorescent probes EcLeuRS EcDansylalanineRS M40A, L41N, T252A, S497C, Y499I, Y527G, H537T Fasta Escherichia coli E. coli derived tRNA CUA EcLeu GCCCGGAUGGUGGAAUCGGUAGACACAAGGGAUUCUAAAUCCCUCGGCGUUCGCGCUGUGCGGGUUCAAGUCCCGCUCCGGGUACCA CUA Escherichia coli Sacharomyces cerevisiae https://doi.org/10.1073/pnas.0603965103 Summerer, D., Chen, S., Wu, N., Deiters, A., Chin, J. W., & Schultz, P. G. (2006). A genetically encoded fluorescent amino acid. Proceedings of the National Academy of Sciences, 103(26), 9785-9789.
4 PABK N6-p-azidobenzyloxycarbonyl lysine - C14H19N5O4 Lysine bioorthogonal ligation handle, an infrared probe, photo-affinity reagent, chemical reduction MbPylRS MbPABKRS L274A, C313S, Y349F Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanosarcina barkeri Escherichia coli 10.1039/C6SC02615J Ge, Y., Fan, X., & Chen, P. R. (2016). A genetically encoded multifunctional unnatural amino acid for versatile protein manipulations in living cells. Chemical science, 7(12), 7055-7060.
5 PrK Propargyl-L-lysine - C9H16N2O2 Lysine CuAAC MmPylRS MmPylRS - Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1021/ja2054034 Greiss, S., & Chin, J. W. (2011). Expanding the genetic code of an animal. Journal of the American Chemical Society, 133(36), 14196-14199.
6 CpK N6-(1-methylcycloprop-2-enecarboxamido) lysine - C20C12N2O4 Lysine Photoclick MbPylRS MbCpKRS L266M, L270I, Y271L, L274A, C313I Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanosarcina barkeri Escherichia coli https://doi.org/10.1002/anie.201205352 Yu, Z., Pan, Y., Wang, Z., Wang, J., & Lin, Q. (2012). Genetically encoded cyclopropene directs rapid, photoclick?chemistry?mediated protein labeling in mammalian cells. Angewandte Chemie, 124(42), 10752-10756.
7 AcrK N6-acryllysine - C9H16N2O3 Lysine Photoclick MbPylRS MbArcKRS D76G, L266M, L270I, Y271F, L274A, C313F Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanosarcina barkeri Escherichia coli https://doi.org/10.1002/anie.201303477 Li, F., Zhang, H., Sun, Y., Pan, Y., Zhou, J., & Wang, J. (2013). Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. Angewandte Chemie International Edition, 52(37), 9700-9704.
8 CoK N6-(cyclooct-2-yn-1-yloxy)carbonyl)L-lysine - C15H24N2O4 Lysine Photocrosslinking, alkyne group MmPylRS MmCoKRS Y306A, Y384F Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1038/ncomms11964 Alamudi, S. H., Satapathy, R., Kim, J., Su, D., Ren, H., Das, R., ... & Chang, Y. T. (2016). Development of background-free tame fluorescent probes for intracellular live cell imaging. Nature communications, 7(1), 1-9.
9 BCNK bicyclo[6.1.0]non-4-yn-9-ylmethanol lysine - C17H26N2O4 Lysine IEDDA MbPylRS MmBCNKRS Y271M, L274G, C313A Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanosarcina barkeri Escherichia coli https://doi.org/10.1021/ja302832g https://doi.org/10.1021/ja302832g
10 2å-TCOK trans-cyclooct-2-ene lysine - C15H26N2O4 Lysine IEDDA MmPylRS Mm-TCOKRS Y306A, Y384F Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1002/anie.201309847 Niki?, I., Plass, T., Schraidt, O., Szyma?ski, J., Briggs, J. A., Schultz, C., & Lemke, E. A. (2014). Minimal tags for rapid dual?color live?cell labeling and super?resolution microscopy. Angewandte Chemie international edition, 53(8), 2245-2249.
11 2å-TCOK trans-cyclooct-2-ene lysine - C15H26N2O4 Lysine IEDDA MbPylRS Mb-TCOKRS Y271M, L274G, C313A Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanosarcina barkeri Escherichia coli https://doi.org/10.1002/anie.201309848 Niki?, I., Plass, T., Schraidt, O., Szyma?ski, J., Briggs, J. A., Schultz, C., & Lemke, E. A. (2014). Minimal tags for rapid dual?color live?cell labeling and super?resolution microscopy. Angewandte Chemie international edition, 53(8), 2245-2249.
12 4å-TCOK trans-cyclooct-4-ene lysine - C15H26N2O4 Lysine IEDDA MmPylRS Mm-TCOKRS Y306A, Y384F Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1002/anie.201309849 Niki?, I., Plass, T., Schraidt, O., Szyma?ski, J., Briggs, J. A., Schultz, C., & Lemke, E. A. (2014). Minimal tags for rapid dual?color live?cell labeling and super?resolution microscopy. Angewandte Chemie international edition, 53(8), 2245-2249.
13 4å-TCOK trans-cyclooct-4-ene lysine - C15H26N2O4 Lysine IEDDA MbPylRS Mb-TCOKRS Y271M, L274G, C313A Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanosarcina barkeri Escherichia coli https://doi.org/10.1002/anie.201309850 Niki?, I., Plass, T., Schraidt, O., Szyma?ski, J., Briggs, J. A., Schultz, C., & Lemke, E. A. (2014). Minimal tags for rapid dual?color live?cell labeling and super?resolution microscopy. Angewandte Chemie international edition, 53(8), 2245-2249.
14 DOTCOK dioxo-TCO lysine - C15H26N2O7 Lysine IEDDA MmPylRS MmDOTCOKRS Y306A, Y384F Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1002/cbic.201600284 Kozma, E., Niki?, I., Varga, B. R., Aramburu, I. V., Kang, J. H., Fackler, O. T., ... & Kele, P. (2016). Hydrophilic trans?cyclooctenylated noncanonical amino acids for fast intracellular protein labeling. ChemBioChem, 17(16), 1518-1524.
15 CbK N?-(3-(2-cyclobutene-1-yl)propanoyl)lysine - C13H22N4O3 Lysine IEDDA MbPylRS MbCbKRS L274M, C313A Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanosarcina barkeri Escherichia coli 10.1039/c7cc05580c Liu, K., Enns, B., Evans, B., Wang, N., Shang, X., Sittiwong, W., ... & Guo, J. (2017). A genetically encoded cyclobutene probe for labelling of live cells. Chemical Communications, 53(76), 10604-10607.
16 NBOK N6-5-norbornene-2-yloxycarbonyl-L-lysine - C14H22N2O4 Lysine IEDDA MbPylRS MbNBOK - Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanosarcina barkeri Escherichia coli https://doi.org/10.1038/nchem.1250 Lang, K., Davis, L., Torres-Kolbus, J., Chou, C., Deiters, A., & Chin, J. W. (2012). Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nature chemistry, 4(4), 298-304.
17 SCOK cyclooctyne lysine - C15H24N2O4 Lysine IEDDA MmPylRS MbSCOK Y306A, Y384F Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1038/nprot.2015.045 Niki?, I., Kang, J. H., Girona, G. E., Aramburu, I. V., & Lemke, E. A. (2015). Labeling proteins on live mammalian cells using click chemistry. Nature protocols, 10(5), 780-791.
18 NOR 5-norbornen-2-ol tyrosine - C18H23NO4 Tyrosine - MmPylRS MmNORRS Y306A, N346A, C348A, Y384F Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1021/bc500361d Kurra, Y., Odoi, K. A., Lee, Y. J., Yang, Y., Lu, T., Wheeler, S. E., ... & Liu, W. R. (2014). Two rapid catalyst-free click reactions for in vivo protein labeling of genetically encoded strained alkene/alkyne functionalities. Bioconjugate chemistry, 25(9), 1730-1738.
19 COY cyclooct-2-ynol tyrosine - C19H25NO4 Tyrosine - MmPylRS MmCOYRS Y306A, N346A, C348A, Y384F Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1021/bc500361d Kurra, Y., Odoi, K. A., Lee, Y. J., Yang, Y., Lu, T., Wheeler, S. E., ... & Liu, W. R. (2014). Two rapid catalyst-free click reactions for in vivo protein labeling of genetically encoded strained alkene/alkyne functionalities. Bioconjugate chemistry, 25(9), 1730-1738.
20 DS1/2 (E)-2-(cyclooct-4-en-1-yloxyl)ethanol tyrosine - C19H27NO4 Tyrosine - MmPylRS MmDS1+2 Y306A, N346A, C348A, Y384F Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1021/bc500361d Kurra, Y., Odoi, K. A., Lee, Y. J., Yang, Y., Lu, T., Wheeler, S. E., ... & Liu, W. R. (2014). Two rapid catalyst-free click reactions for in vivo protein labeling of genetically encoded strained alkene/alkyne functionalities. Bioconjugate chemistry, 25(9), 1730-1738.
21 ANL azidonorleucine - C6H12N4O2 Methionine - EcMetRS EcANLRS L13G Fasta Escherichia coli Ec tRNA Met CGCGGGGUAGCUCAGUUGGUUAGAGCACAUCACUCAUAAUGAUGGGGUCACAGGUUCGAAUCCCGUCCCCGCAACCA CAU Escherichia coli Drosophila melanogaster https://doi.org/10.1038/ncomms8521 Erdmann, I., Marter, K., Kobler, O., Niehues, S., Abele, J., Mller, A., ... & Dieterich, D. C. (2015). Cell-selective labelling of proteomes in Drosophila melanogaster. Nature communications, 6(1), 1-11.
22 NEAK N6-2-azideoethyloxycarbonyl-L-lysine - C9H17N5O4 Lysine Photocrosslinking, azide group MmPylRS MmPylRS - Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei 293-F (Homo sapiens) https://doi.org/10.1021/acs.bioconjchem.6b00412 Wu, Y., Zhu, H., Zhang, B., Liu, F., Chen, J., Wang, Y., ... & Zhou, D. (2016). Synthesis of site-specific radiolabeled antibodies for radioimmunotherapy via genetic code expansion. Bioconjugate Chemistry, 27(10), 2460-2468.
23 pBrF bromophenylalanine - C9H10BrNO2 Phenylalanine - ScPheRS ScpBrFRS T415A Fasta Saccharomyces cerevisiae Sc tRNA Phe CUA GGUUCUAUAGUAUAGCGGUUAGUACUGGGGACUCUAAAUCCCUUGACCUGGGUUCGAAUCCCAGUAGGACCGC CUA Saccharomyces cerevisiae Escherichia coli https://doi.org/10.1021/ja0626281 Kwon, I., Wang, P., & Tirrell, D. A. (2006). Design of a bacterial host for site-specific incorporation of p-bromophenylalanine into recombinant proteins. Journal of the American Chemical Society, 128(36), 11778-11783.
24 pMeoF p-methoxy-phenylalanine - C10H13NO3 Phenylalanine - MmPylRS MmpMeoF N346A, C348A Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1021/cb400917a Tharp, J. M., Wang, Y. S., Lee, Y. J., Yang, Y., & Liu, W. R. (2014). Genetic incorporation of seven ortho-substituted phenylalanine derivatives. ACS chemical biology, 9(4), 884-890.
25 pAzF p-azido-L-phenylalanine - C9H10N4O2 Phenylalanine IR signatures, Click Chemistry MjTyrRS MjpAzFRS Y32T, E107N, D158P, I159L, L162Q, D286R Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1021/ja027007w Chin, J. W., Santoro, S. W., Martin, A. B., King, D. S., Wang, L. & Schultz, P. G. (2002). Addition of p-azido- L-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 124, 9026Ñ9027
26 pAcF p-acetyl-l-phenylalanine - C11H13NO3 Phenylalanine - MjTyrRS MjpAcFRS-LW1 Y32L, D158G, I159C, L162R, D286R Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGUAGUUCAGCAGGGCAGAACGGCGGACUCUAAAUCCGCAUGGCAGGGGUUCAAUCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1073/pnas.0234824100 Wang, L., Zhang, Z., Brock, A., & Schultz, P. G. (2003). Addition of the keto functional group to the genetic code of Escherichia coli. Proceedings of the National Academy of Sciences, 100(1), 56-61.
27 pAcF p-acetyl-l-phenylalanine - C11H13NO3 Phenylalanine - MjTyrRS MjpAcFRS-LW5 Y32L, D158G, I159T, L162R, D286R Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1073/pnas.023482410 Wang, L., Zhang, Z., Brock, A., & Schultz, P. G. (2003). Addition of the keto functional group to the genetic code of Escherichia coli. Proceedings of the National Academy of Sciences, 100(1), 56-61.
28 pAcF p-acetyl-l-phenylalanine - C11H13NO3 Phenylalanine - MjTyrRS MjpAcFRS-LW6 Y32A, D158G, I159G, A167I, D286R Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1073/pnas.0234824100 Wang, L., Zhang, Z., Brock, A., & Schultz, P. G. (2003). Addition of the keto functional group to the genetic code of Escherichia coli. Proceedings of the National Academy of Sciences, 100(1), 56-61.
29 pBpF p-benzoyl-L-phenylalanine - C16H15NO3 Phenylalanine Crosslinking MjTyrRS MjBpFRS Y32G, E107S, D158T, I159S Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1073/pnas.172226299 . W. Chin, A. B. Martin, D. S. King, L. Wang and P. G. Schultz. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 2002, 99(17), 11020Ñ11024
30 L-DOPA L-3,4-Dihydroxyphenylalanine L-DOPA, Levodopa C9H11NO4 Phenylalanine - MjTyrRS MjLDOPARS L64E, H69A, Y118F, D157A, I158A, E219K, F260S, N267D, L281P, H282P, P283L, M284R, D285A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1002/ange.202100579 Thyer, R., d'Oelsnitz, S., Blevins, M. S., Klein, D. R., Brodbelt, J. S., & Ellington, A. D. (2021). Directed Evolution of an Improved Aminoacyl?tRNA Synthetase for Incorporation of L?3, 4?Dihydroxyphenylalanine (L?DOPA). Angewandte Chemie, 133(27), 14937-14942.
31 Nap L-2-naphthylalanine 3-Naphth-2-yl-L-alanine C13H13NO2 Phenylalanine - MjTyrRS MjNapRS Y32L, D158P, I159A, L162Q, A167V Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1021/ja012307j L. Wang, A. Brock and P. G. Schultz, Adding L-3-(2-naphthyl)alanine to the genetic code of E. coli, J. Am. Chem. Soc., 2002, 124, 1836Ò
32 SetY O-(2-mercaptoethyl)-L-tyrosine - C11H15SNO3 Tyrosine long thiol-containing side chains MmPylRS MmXYRS A302T, N346A, C348A, Y384F, W417T Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1073/pnas.1605363113 Liu, T., Wang, Y., Luo, X., Li, J., Reed, S. A., Xiao, H., ... & Schultz, P. G. (2016). Enhancing protein stability with extended disulfide bonds. Proceedings of the National Academy of Sciences, 113(21), 5910-5915.
33 SprY O-(3-mercaptopropyl)-L-tyrosine - C12H17SNO3 Tyrosine long thiol-containing side chains MmPylRS MmXYRS A302T, N346A, C348A, Y384F, W417T Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1073/pnas.1605363113 Liu, T., Wang, Y., Luo, X., Li, J., Reed, S. A., Xiao, H., ... & Schultz, P. G. (2016). Enhancing protein stability with extended disulfide bonds. Proceedings of the National Academy of Sciences, 113(21), 5910-5915.
34 SbuY O-(4-mercaptobutyl)-L-tyrosine - C13H19SNO3 Tyrosine long thiol-containing side chains MmPylRS MmXYRS A302T, N346A, C348A, Y384F, W417T Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1073/pnas.1605363113 Liu, T., Wang, Y., Luo, X., Li, J., Reed, S. A., Xiao, H., ... & Schultz, P. G. (2016). Enhancing protein stability with extended disulfide bonds. Proceedings of the National Academy of Sciences, 113(21), 5910-5915.
35 pCNF p-cyano-l-phenylalanine D-4-CN-Phe-OH C10H10N2O2 Phenylalanine unique IR signatures MjTyrRS MjpCNFRS Y32L, L65V, F108W, N109M, D158G, I159A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1021/bi101929e Young, D. D., Young, T. S., Jahnz, M., Ahmad, I., Spraggon, G., & Schultz, P. G. (2011). An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry, 50(11), 1894-1900.
36 3NY 3-nitro-l-tyrosine - C9H10N2O5 Tyrosine associated with over 50 disease states including transplant rejection, lung infection, central nervous system and ocular inflammation shock, cancer, and neurological disorders MjTyrRS Mj3NT-8RS Y32R, H70L, Q155M, D158G, I159L, 162H Fasta Methanococcus jannaschii Mj tRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii - https://doi.org/10.1021/ja710100d Neumann, H., Hazen, J. L., Weinstein, J., Mehl, R. A., & Chin, J. W. (2008). Genetically encoding protein oxidative damage. Journal of the American Chemical Society, 130(12), 4028-4033.
37 OMeY o-methyl-L-tyrosine - C10H13NO3 Phenylalanine - MjTyrRS MjoMeYRS Y32Q, E107T, D158A, L162P Fasta Methanococcus jannaschii Mj tRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii - https://doi.org/10.1110/ps.041239305 Zhang, Y., Wang, L., Schultz, P. G., & Wilson, I. A. (2005). Crystal structures of apo wild?type M. jannaschii tyrosyl?tRNA synthetase (TyrRS) and an engineered TyrRS specific for O?methyl?L?tyrosine. Protein science, 14(5), 1340-1349.
38 pIF p-iodo-L-phenylalanine - C9H10INO2 Phenylalanine heavy atom MmPylRS MmIFRS1 N346A, C348L Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1039/C0MB00217H Wang, Y. S., Russell, W. K., Wang, Z., Wan, W., Dodd, L. E., Pai, P. J., ... & Liu, W. R. (2011). The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. Molecular bioSystems, 7(3), 714-717.
39 pAF p-Amino-Phenylalanine - C9H12N2O2 Phenylalanine - MjTyrRS MjpAFRS Y32T, E107T, D158P, I159L, L162A Fasta Methanocaldococcus jannaschii Mj tRNA Tyr CUA CCGGCGGUAGUUCAGCAGGGCAGAACGGCGGACUCUAAAUCCGCAUGGCAGGGGUUCAAAUCCCCUCCGCCGGACCA CUA Methanocaldococcus jannaschii - https://doi.org/10.1038/nbt742 Santoro, S. W., Wang, L., Herberich, B., King, D. S., & Schultz, P. G. (2002). An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nature biotechnology, 20(10), 1044-1048.
40 OAY O-allyl-tyrosine - C12H15NO3 Tyrosine - MjTyrRS MjOAYRS(1) Y32S, E107T, D158T, I159Y, L162A Fasta Methanocaldococcus jannaschii Mj tRNA Tyr CUA CCGGCGGUAGUUCAGCAGGGCAGAACGGCGGACUCUAAAUCCGCAUGGCAGGGGUUCAAAUCCCCUCCGCCGGACCA CUA Methanocaldococcus jannaschii - https://doi.org/10.1038/nbt742 Santoro, S. W., Wang, L., Herberich, B., King, D. S., & Schultz, P. G. (2002). An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nature biotechnology, 20(10), 1044-1048.
41 OAY O-allyl-tyrosine - C12H15NO3 Tyrosine - MjTyrRS MjOAYRS(3) Y32T, E107H, D158Q, I159T, L162E Fasta Methanocaldococcus jannaschii Mj tRNA Tyr CUA CCGGCGGUAGUUCAGCAGGGCAGAACGGCGGACUCUAAAUCCGCAUGGCAGGGGUUCAAAUCCCCUCCGCCGGACCA CUA Methanocaldococcus jannaschii - https://doi.org/10.1038/nbt742 Santoro, S. W., Wang, L., Herberich, B., King, D. S., & Schultz, P. G. (2002). An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nature biotechnology, 20(10), 1044-1048.
42 OAY O-allyl-tyrosine - C12H15NO3 Tyrosine - MjTyrRS MjOAYRS(5) Y32P, E107M, D158N, I159T, L162G Fasta Methanocaldococcus jannaschii Mj tRNA Tyr CUA CCGGCGGUAGUUCAGCAGGGCAGAACGGCGGACUCUAAAUCCGCAUGGCAGGGGUUCAAAUCCCCUCCGCCGGACCA CUA Methanocaldococcus jannaschii - https://doi.org/10.1038/nbt742 Santoro, S. W., Wang, L., Herberich, B., King, D. S., & Schultz, P. G. (2002). An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nature biotechnology, 20(10), 1044-1048.
43 OAY O-allyl-tyrosine - C12H15NO3 Tyrosine - MjTyrRS MjOAYRS(5) E107A, D158C, I159A Fasta Methanocaldococcus jannaschii Mj tRNA Tyr CUA CCGGCGGUAGUUCAGCAGGGCAGAACGGCGGACUCUAAAUCCGCAUGGCAGGGGUUCAAAUCCCCUCCGCCGGACCA CUA Methanocaldococcus jannaschii - https://doi.org/10.1038/nbt742 Santoro, S. W., Wang, L., Herberich, B., King, D. S., & Schultz, P. G. (2002). An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nature biotechnology, 20(10), 1044-1048.
44 pCF p-carboxyl-phenylalanine - C10H11NO4 Phenylalanine - MjTyrRS MjpCFRS Y32, Y102, V103, E107, D158, I159, L162 Fasta Methanocaldococcus jannaschii Mj tRNA Tyr CUA CCGGCGGUAGUUCAGCAGGGCAGAACGGCGGACUCUAAAUCCGCAUGGCAGGGGUUCAAAUCCCCUCCGCCGGACCA CUA Methanocaldococcus jannaschii - https://doi.org/10.1038/nbt742 Santoro, S. W., Wang, L., Herberich, B., King, D. S., & Schultz, P. G. (2002). An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nature biotechnology, 20(10), 1044-1048.
45 pIsoprF p-isopropyl-phenylalanine (2S)-2-amino-3-(4-propan-2-ylphenyl)propanoic acid C12H17NO2 Phenylalanine - MjTyrRS MjpIFRS Y32G, Y102C, V103A, E107P, D158G, I159Y Fasta Methanocaldococcus jannaschii Mj tRNA Tyr CUA CCGGCGGUAGUUCAGCAGGGCAGAACGGCGGACUCUAAAUCCGCAUGGCAGGGGUUCAAAUCCCCUCCGCCGGACCA CUA Methanocaldococcus jannaschii - https://doi.org/10.1038/nbt742 Santoro, S. W., Wang, L., Herberich, B., King, D. S., & Schultz, P. G. (2002). An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nature biotechnology, 20(10), 1044-1048.
46 BocK N6-boc-L-lysine - C11H22N2O4 Lysine - MmPylRS MmPylRS - Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1038/nbt742 Santoro, S. W., Wang, L., Herberich, B., King, D. S., & Schultz, P. G. (2002). An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nature biotechnology, 20(10), 1044-1048.
47 pFF p-fluoro-phenylalanine - C9H10FNO2 Phenylalanine valuable in solid-state NMR, potential isotopic labelling ScPheRS ScPheRS - Fasta Saccharomyces cerevisiae Sc tRNA Phe CUA G37A GGUUCUAUAGUAUAGCGGUUAGUACUGGGGACUCUAAAUCCCUUGACCUGGGUUCGAAUCCCAGUAGGACCGC CUA Saccharomyces cerevisiae Escherichia coli https://doi.org/10.1002/pro.5560070223 Furter, R. (1998). Expansion of the genetic code: Site?directed p?fluoro?phenylalanine incorporation in Escherichia coli. Protein Science, 7(2), 419-426.
48 PenK N6?pent?4?ynyloxy?carbonyl?L?Lysine - C12H19N2O4 Pyrrolysine aklyne group (CuAAC) MbPylRS MbPenKRS L274A, C313S, Y349F Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanocaldococcus jannaschii Homo sapiens (Huh-7 cells) https://doi.org/10.1002/anie.201305787 Lin, S., Yan, H., Li, L., Yang, M., Peng, B., Chen, S., ... & Chen, P. R. (2013). Site?specific engineering of chemical functionalities on the surface of live hepatitis D virus. Angewandte Chemie International Edition, 52(52), 13970-13974.
49 ACPK N6?((1R,2R)?2?azido?cyclopentyloxy?carbonyl)?L?lysine - C12H21N5O4 Pyrrolysine azide group (CuAAC) MbPylRS MbACPKRS - Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanocaldococcus jannaschii Homo sapiens (Huh-7 cells) https://doi.org/10.1002/anie.201305787 Lin, S., Yan, H., Li, L., Yang, M., Peng, B., Chen, S., ... & Chen, P. R. (2013). Site?specific engineering of chemical functionalities on the surface of live hepatitis D virus. Angewandte Chemie International Edition, 52(52), 13970-13974.
50 DiZPK (3?(3?methyl?3H?diazirine?3?yl)?propaminocarbonyl?N6?L?lysine - C12H23N4O3 Pyrrolysine photo-reactive diazirine for photo-crosslinking MbPylRS MbDiZPKRS L274A, C313S, Y349F Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanocaldococcus jannaschii Homo sapiens (Huh-7 cells) https://doi.org/10.1002/anie.201305787 Lin, S., Yan, H., Li, L., Yang, M., Peng, B., Chen, S., ... & Chen, P. R. (2013). Site?specific engineering of chemical functionalities on the surface of live hepatitis D virus. Angewandte Chemie International Edition, 52(52), 13970-13974.
51 ONBK o?nitrobenzyloxycarbonyl?N6?lysine - C14H19N3O6 Pyrrolysine photolytically removable O-nitrobenzyloxycarbonyl group MbPylRS MbONBKRS Y271I, L274A, C313A, Y349F Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanocaldococcus jannaschii Homo sapiens (Huh-7 cells) https://doi.org/10.1002/anie.201305787 Lin, S., Yan, H., Li, L., Yang, M., Peng, B., Chen, S., ... & Chen, P. R. (2013). Site?specific engineering of chemical functionalities on the surface of live hepatitis D virus. Angewandte Chemie International Edition, 52(52), 13970-13974.
52 BCN bicyclo[6.1.0]non?4?yn?9?ylmethanol - C17H26N2O4 Pyrrolysine bears a cyclooctene moiety capable of participatin gthe inverse electron-deman Diels-Alder reaction and the 1,3-dipolar cycloaddition on proteins MbPylRS MbBCNRS M241F, A267S, Y271C, L274M Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanocaldococcus jannaschii Homo sapiens (Huh-7 cells) https://doi.org/10.1002/anie.201305787 Lin, S., Yan, H., Li, L., Yang, M., Peng, B., Chen, S., ... & Chen, P. R. (2013). Site?specific engineering of chemical functionalities on the surface of live hepatitis D virus. Angewandte Chemie International Edition, 52(52), 13970-13974.
53 ButK N6-(tert-butyloxycarbonyl)-l-lysine - C11H22N2O4 Pyrrolysine - MmPylRS MmPylRS - Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Caenorhabditis elegans https://doi.org/10.1021/ja2054034 Greiss, S., & Chin, J. W. (2011). Expanding the genetic code of an animal. Journal of the American Chemical Society, 133(36), 14196-14199.
54 ProK N6-[(2-propynyloxy)carbonyl]-l-lysine - C10H15N2O4 Pyrrolysine - MmPylRS MmPylRS - Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Caenorhabditis elegans https://doi.org/10.1021/ja2054034 Greiss, S., & Chin, J. W. (2011). Expanding the genetic code of an animal. Journal of the American Chemical Society, 133(36), 14196-14199.
55 VSF p-vinylsulfonamido-(S)-phenylalanine - C10H14O4N2S Phenylalanine Photocrosslinking (aza-Michael acceptor) MjTyrRS MjVSFRS Y32G, L65Y, F108H, Q109G, D158G, I159L, L162Q, D286R Fasta Methanocaldococcus jannaschii Mj tRNA Tyr CUA CCGGCGGUAGUUCAGCAGGGCAGAACGGCGGACUCUAAAUCCGCAUGGCAGGGGUUCAAAUCCCCUCCGCCGGACCA CUA Methanocaldococcus jannaschii Escherichia coli https://doi.org/10.1021/ja502851h Furman, J. L., Kang, M., Choi, S., Cao, Y., Wold, E. D., Sun, S. B., ... & Kim, C. H. (2014). A genetically encoded aza-Michael acceptor for covalent cross-linking of protein?receptor complexes. Journal of the American Chemical Society, 136(23), 8411-8417.
56 AcrK N6-acryllysine - C9H15N2O3 Lysine Photoclick MbPylRS MbArcKRS L270I, L274A, C313F, Y349F Fasta Methanosarcina barkeri Mb tRNA Pyl CUA GGAAACCUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGCCGGGUUAGAUUCCCGGGGUUUCCGCCA CUA Methanosarcina barkeri Escherichia coli https://doi.org/10.1021/ja502851h Furman, J. L., Kang, M., Choi, S., Cao, Y., Wold, E. D., Sun, S. B., ... & Kim, C. H. (2014). A genetically encoded aza-Michael acceptor for covalent cross-linking of protein?receptor complexes. Journal of the American Chemical Society, 136(23), 8411-8417.
57 2NF 2-nitrophenylalanine - C9H10N2O4 Phenylalanine - MjTyrRS Mj2NFRS Y32G, L65H, A67G, H70G, F108L, Q109S, Y114S, D158T, I159Y, L162D Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1016/j.chembiol.2009.01.013 Peters FB, Brock A, Wang J, Schultz PG. Photocleavage of the polypeptide backbone by 2-nitrophenylalanine. Chem Biol. 2009 Feb 27;16(2):148-52. doi: 10.1016/j.chembiol.2009.01.013. PMID: 19246005; PMCID: PMC2714363.
58 oCNF o-cyano-phenylalanine - C10H10N2O2 Phenylalanine - MmPylRS MmpBrF N346A, C348A Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1371/journal.pone.0057035 Odoi, K. A., Huang, Y., Rezenom, Y. H., and Liu, W. R. (2013) Nonsense and sense suppression abilitites of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNAPyl pairs in the Escherichia coli BL21(DE3) cell strain PLoS One 8, e57035
59 oTriFF o-trifluoromethyl-phenylalanine - C10H10F3NO2 Phenylalanine - MmPylRS MmpBrF N346A, C348A Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1371/journal.pone.0057035 Odoi, K. A., Huang, Y., Rezenom, Y. H., and Liu, W. R. (2013) Nonsense and sense suppression abilitites of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNAPyl pairs in the Escherichia coli BL21(DE3) cell strain PLoS One 8, e57035
60 oFF o-fluoro-phenylalanine - C9H10FNO2 Phenylalanine - MmPylRS MmpBrF N346A, C348A Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1371/journal.pone.0057035 Odoi, K. A., Huang, Y., Rezenom, Y. H., and Liu, W. R. (2013) Nonsense and sense suppression abilitites of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNAPyl pairs in the Escherichia coli BL21(DE3) cell strain PLoS One 8, e57035
61 mFF m-fluoro-phenylalanine - C9H10FNO2 Phenylalanine - MmPylRS MmpBrF N346A, C348A Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1371/journal.pone.0057035 Odoi, K. A., Huang, Y., Rezenom, Y. H., and Liu, W. R. (2013) Nonsense and sense suppression abilitites of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNAPyl pairs in the Escherichia coli BL21(DE3) cell strain PLoS One 8, e57035
62 oClF o-chloro-phenylalanine - C9H10ClNO2 Phenylalanine - MmPylRS MmpBrF N346A, C348A Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1371/journal.pone.0057035 Odoi, K. A., Huang, Y., Rezenom, Y. H., and Liu, W. R. (2013) Nonsense and sense suppression abilitites of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNAPyl pairs in the Escherichia coli BL21(DE3) cell strain PLoS One 8, e57035
63 oIF o-iodo-phenylalanine - C9H10INO2 Phenylalanine - MmPylRS MmpBrF N346A, C348A Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1371/journal.pone.0057035 Odoi, K. A., Huang, Y., Rezenom, Y. H., and Liu, W. R. (2013) Nonsense and sense suppression abilitites of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNAPyl pairs in the Escherichia coli BL21(DE3) cell strain PLoS One 8, e57035
64 oMeF o-methyl-phenylalanine - C10H13NO2 Phenylalanine - MmPylRS MmpBrF N346A, C348A Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1371/journal.pone.0057035 Odoi, K. A., Huang, Y., Rezenom, Y. H., and Liu, W. R. (2013) Nonsense and sense suppression abilitites of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNAPyl pairs in the Escherichia coli BL21(DE3) cell strain PLoS One 8, e57035
65 oMeOF o-Methoxy-phenylalanine - C10H13NO3 Phenylalanine - MmPylRS MmpBrF N346A, C348A Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1371/journal.pone.0057035 Odoi, K. A., Huang, Y., Rezenom, Y. H., and Liu, W. R. (2013) Nonsense and sense suppression abilitites of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNAPyl pairs in the Escherichia coli BL21(DE3) cell strain PLoS One 8, e57035
66 pBpF p-benzoyl-L-phenylalanine - C16H15NO3 Phenylalanine - MjTyrRS MjBpFRS -T158S,A31V A31V, Y32G, E107S, D158S, I159S Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
67 4F-pBpF p-fluoro-benzoyl-L-phenylalanine - C16H14FNO3 Phenylalanine - MjTyrRS MjBpFRS -T158S,A31V A31V, Y32G, E107S, D158S, I159S Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
68 Thyr L-thyronine - C15H15NO4 Phenylalanine - MjTyrRS MjBpFRS -T158S,A31V A31V, Y32G, E107S, D158S, I159S Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
69 pBpF p-benzoyl-L-phenylalanine - C16H15NO3 Phenylalanine - MjTyrRS MjBpFRS - V164A Y32G, E107S, D158T, I159S, V164A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
70 4F-pBpF p-fluoro-benzoyl-L-phenylalanine - C16H14FNO3 Phenylalanine - MjTyrRS MjBpFRS - V164A Y32G, E107S, D158T, I159S, V164A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
71 2,6-dF-pBpF 2,6-difluoro-benzoyl-L-phenylalanin - C16H13F2NO3 Phenylalanine - MjTyrRS MjBpFRS - V164A Y32G, E107S, D158T, I159S, V164A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
72 4-nitro-pBpF 4-nitro-benzoylphenylalanin - C16H14N2O5 Phenylalanine - MjTyrRS MjBpFRS - V164A Y32G, E107S, D158T, I159S, V164A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
73 4I-pBpF p-iodo-benzoyl-L-phenylalanine - C16H14INO3 Phenylalanine - MjTyrRS MjBpFRS - V164A Y32G, E107S, D158T, I159S, V164A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
74 3F-nitro-pBpF 3-fluoro-4-nitro-benzoylphenylalanine - C16H13FN2O5 Phenylalanine - MjTyrRS MjBpFRS - V164A Y32G, E107S, D158T, I159S, V164A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
75 benzyl-Y O-benzyl-L -tyrosine - C16H17NO3 Tyrosine - MjTyrRS MjBpFRS - V164A Y32G, E107S, D158T, I159S, V164A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
76 pBpF p-benzoyl-L-phenylalanine - C16H15NO3 Phenylalanine - MjTyrRS MjBpFRS - L162A Y32G, E107S, D158T, I159S Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
77 4F-pBpF p-fluoro-benzoyl-L-phenylalanine - C16H14FNO3 Phenylalanine - MjTyrRS MjBpFRS - L162A Y32G, E107S, D158T, I159S Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
78 Thyr L-thyronine - C15H15NO4 Tyrosine - MjTyrRS MjBpFRS - L162A Y32G, E107S, D158T, I159S Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
79 Benzyl-Y O-benzyl-L-tyrosine - C16H17NO3 Tyrosine - MjTyrRS MjNapRS - L32G Y32G, D158P, I159A, L162Q, A167V Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
80 4F-pBpF p-fluoro-benzoyl-L-phenylalanine - C16H14FNO3 Phenylalanine - MjTyrRS MjNapRS - L32G Y32G, D158P, I159A, L162Q, A167V Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
81 pBpF p-benzoyl-L-phenylalanine - C16H15NO3 Phenylalanine - MjTyrRS MjNapRS - L32G Y32G, D158P, I159A, L162Q, A167V Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
82 Thyr L-thyronine - C15H15NO4 Tyrosine - MjTyrRS MjNapRS - L32G Y32G, D158P, I159A, L162Q, A167V Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1039/B904032C Stokes, A. L., Miyake-Stoner, S. J., Peeler, J. C., Nguyen, D. P., Hammer, R. P., & Mehl, R. A. (2009). Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Molecular BioSystems, 5(9), 1032. https://doi.org/10.1039/b904032c
83 hR L-homoarginine - C7H16N4O2 Arginine Strong basic group in the side chain MmPylRS MmHarRS R61K, H63Y, S193R, N203T, L305H, L309W, N346D, C348S, L367M, Y384F, K429M, K431M, D433G, G444E Fasta Methanosarcina mazei Mm tRNA Pyl CCU GGAAACGUGAUCAUGUAGAUCGAACGGUCUCCUAAACCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CCU Methanosarcina mazei Escherichia coli https://doi.org/10.1093/nar/gkv787 Takahito Mukai, Atsushi Yamaguchi, Kazumasa Ohtake, Mihoko Takahashi, Akiko Hayashi, Fumie Iraha, Satoshi Kira, Tatsuo Yanagisawa, Shigeyuki Yokoyama, Hiroko Hoshi, Takatsugu Kobayashi, Kensaku Sakamoto, Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli, Nucleic Acids Research, Volume 43, Issue 16, 18 September 2015, Pages 8111Ñ8122, https://doi.org/10.1093/nar/gkv787
84 L-NIL L-N6-(1-iminoethyl)lysine - C8H17N3O2 Arginine - MmPylRS MmHarRS R61K, H63Y, S193R, N203T, L305H, L309W, N346D, C348S, L367M, Y384F, K429M, K431M, D433G, G444E Fasta Methanosarcina mazei Mm tRNA Pyl CCU GGAAACGUGAUCAUGUAGAUCGAACGGUCUCCUAAACCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CCU Methanosarcina mazei Escherichia coli https://doi.org/10.1093/nar/gkv787 Takahito Mukai, Atsushi Yamaguchi, Kazumasa Ohtake, Mihoko Takahashi, Akiko Hayashi, Fumie Iraha, Satoshi Kira, Tatsuo Yanagisawa, Shigeyuki Yokoyama, Hiroko Hoshi, Takatsugu Kobayashi, Kensaku Sakamoto, Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli, Nucleic Acids Research, Volume 43, Issue 16, 18 September 2015, Pages 8111Ñ8122, https://doi.org/10.1093/nar/gkv787
85 CprY O-(3-Chloropropyl)-L-tyrosine - C12H16ClNO3 Tyrosine - MmPylRS MmXYRS A302T, N346A, C348A, Y384F, W417T Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1002/anie.201308794 Xiang, Z., Lacey, V. K., Ren, H., Xu, J., Burban, D. J., Jennings, P. A., & Wang, L. (2014). Proximity?enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angewandte Chemie international edition, 53(8), 2190-2193.
86 BetY O-(2-Bromoethyl)-L-tyrosine - C11H14BrNO3 Tyrosine - MmPylRS MmXYRS A302T, N346A, C348A, Y384F, W417T Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1002/anie.201308794 Xiang, Z., Lacey, V. K., Ren, H., Xu, J., Burban, D. J., Jennings, P. A., & Wang, L. (2014). Proximity?enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angewandte Chemie international edition, 53(8), 2190-2193.
87 BprY O-(3-Bromopropyl)-L-tyrosine - C12H16BrNO3 Tyrosine - MmPylRS MmXYRS A302T, N346A, C348A, Y384F, W417T Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1002/anie.201308794 Xiang, Z., Lacey, V. K., Ren, H., Xu, J., Burban, D. J., Jennings, P. A., & Wang, L. (2014). Proximity?enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angewandte Chemie international edition, 53(8), 2190-2193.
88 BbtY O-(4-Bromobutyl)-L-tyrosine - C13H18BrNO3 Tyrosine - MmPylRS MmXYRS A302T, N346A, C348A, Y384F, W417T Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1002/anie.201308794 Xiang, Z., Lacey, V. K., Ren, H., Xu, J., Burban, D. J., Jennings, P. A., & Wang, L. (2014). Proximity?enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angewandte Chemie international edition, 53(8), 2190-2193.
89 BptY O-(5-Bromopentyl)-L-tyrosine - C14H20BrNO3 Tyrosine - MmPylRS MmXYRS A302T, N346A, C348A, Y384F, W417T Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1002/anie.201308794 Xiang, Z., Lacey, V. K., Ren, H., Xu, J., Burban, D. J., Jennings, P. A., & Wang, L. (2014). Proximity?enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angewandte Chemie international edition, 53(8), 2190-2193.
90 IetY O-(2-Iodoethyl)-L-tyrosine - C11H14INO3 Tyrosine - MmPylRS MmXYRS A302T, N346A, C348A, Y384F, W417T Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1002/anie.201308794 Xiang, Z., Lacey, V. K., Ren, H., Xu, J., Burban, D. J., Jennings, P. A., & Wang, L. (2014). Proximity?enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angewandte Chemie international edition, 53(8), 2190-2193.
91 IprY O-(3-Iodopropyl)-L-tyrosine - C12H16INO3 Tyrosine - MmPylRS MmXYRS A302T, N346A, C348A, Y384F, W417T Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1002/anie.201308794 Xiang, Z., Lacey, V. K., Ren, H., Xu, J., Burban, D. J., Jennings, P. A., & Wang, L. (2014). Proximity?enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angewandte Chemie international edition, 53(8), 2190-2193.
92 IetY O-(2-Iodoethyl)-L-tyrosine - C11H14INO3 Tyrosine - MmPylRS MmXYRS A302T, N346A, C348A, Y384F, W417T Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1002/anie.201308794 Xiang, Z., Lacey, V. K., Ren, H., Xu, J., Burban, D. J., Jennings, P. A., & Wang, L. (2014). Proximity?enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angewandte Chemie international edition, 53(8), 2190-2193.
93 IprY O-(3-Iodopropyl)-L-tyrosine - C12H16INO3 Tyrosine - MmPylRS MmXYRS A302T, N346A, C348A, Y384F, W417T Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli https://doi.org/10.1002/anie.201308794 Xiang, Z., Lacey, V. K., Ren, H., Xu, J., Burban, D. J., Jennings, P. A., & Wang, L. (2014). Proximity?enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angewandte Chemie international edition, 53(8), 2190-2193.
94 MeOF p-methoxy- L-phenylalanine - C10H13NO3 Phenylalanine - MmPylRS MmAzFRS-M N346A, C348M, W417L, K431M Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
95 MeOF p-methoxy- L-phenylalanine - C10H13NO3 Phenylalanine - MmPylRS MmAzFRS-GS N346A, C348M, W417L, D433G, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
96 MeOF p-methoxy- L-phenylalanine - C10H13NO3 Phenylalanine - MmPylRS MmAzFRS-MS N346A, C348M, W417L, K341M, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
97 pIF p-iodo-L -phenylalanine - C9H10INO2 Phenylalanine - MmPylRS MmAzFRS-MS N346A, C348M, W417L, K341M, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
98 pBrF p-bromo- L-phenylalanine - C9H10BrNO2 Phenylalanine - MmPylRS MmAzFRS-MS N346A, C348M, W417L, K341M, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
99 pClF p-chloro- L-phenylalanine - C9H10ClNO2 Phenylalanine - MmPylRS MmAzFRS-MS N346A, C348M, W417L, K341M, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
99 pAzF p-azido- L-phenylalanine - C9H10N4O2 Phenylalanine - MmPylRS MmAzFRS-MS N346A, C348M, W417L, K341M, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
100 pPrF p-propargyl-L -phenylalanine - C10H12N4O2 Phenylalanine - MmPylRS MmAzFRS-MS N346A, C348M, W417L, K341M, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
101 MeOF p-methoxy- L-phenylalanine - C10H13NO3 Phenylalanine - MmPylRS AzFRS-Sc N346A, C348M, W417L, K341M, D433G, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
102 pIF p-iodo-L -phenylalanine - C9H10INO2 Phenylalanine - MmPylRS AzFRS-Sc N346A, C348M, W417L, K341M, D433G, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
103 pBrF p-bromo- L-phenylalanine - C9H10BrNO2 Phenylalanine - MmPylRS AzFRS-Sc N346A, C348M, W417L, K341M, D433G, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
104 pClF p-chloro- L-phenylalanine - C9H10ClNO2 Phenylalanine - MmPylRS AzFRS-Sc N346A, C348M, W417L, K341M, D433G, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
105 pAzF p-azido- L-phenylalanine - C9H10N4O2 Phenylalanine - MmPylRS AzFRS-Sc N346A, C348M, W417L, K341M, D433G, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
106 pPrF p-propargyl-L -phenylalanine - C10H12N4O2 Phenylalanine - MmPylRS AzFRS-Sc N346A, C348M, W417L, K341M, D433G, A441S Fasta Methanosarcina mazei Mm tRNA Pyl CUA GGAAACGUGAUCAUGUAGAUCGAAUGGACUCUAAAUCCGUUCAGUGGGGUUAGAUUCCCCACGUUUCCGCCA CUA Methanosarcina mazei Escherichia coli 10.3389/fchem.2021.779976 Wang, Y. H., Jian, M. L., Chen, P. J., Tsou, J. C., Truong, L. P., & Wang, Y. S. (2021). Ferritin conjugates with multiple clickable amino acids encoded by C-terminal engineered pyrrolysyl-tRNA synthetase. Frontiers in Chemistry, 9.
107 MeaF 3-(2-mercaptoethyl)aminophenylalanine - C11H16SN2O2 Phenylalanine - MjTyrRS MjO2beYRS Y32G, E107P, L107F, D158A, L162A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1021/acschembio.5b00119 Frost, J. R., Jacob, N. T., Papa, L. J., Owens, A. E., & Fasan, R. (2015). Ribosomal synthesis of macrocyclic peptides in vitro and in vivo mediated by genetically encoded aminothiol unnatural amino acids. ACS chemical biology, 10(8), 1805-1816.
108 AmmF 3-amino-4-mercaptomethyl-phenylalanine - C10H14N2O2 Phenylalanine - MjTyrRS MjO2beYRS Y32G, E107P, L107F, D158A, L162A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1021/acschembio.5b00119 Frost, J. R., Jacob, N. T., Papa, L. J., Owens, A. E., & Fasan, R. (2015). Ribosomal synthesis of macrocyclic peptides in vitro and in vivo mediated by genetically encoded aminothiol unnatural amino acids. ACS chemical biology, 10(8), 1805-1816.
109 O2beY O-(2-bromoethyl)-tyrosine - C11H14BrNO3 Tyrosine - MjTyrRS MjO2beYRS Y32G, E107P, L107F, D158A, L162A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1021/cb500311k Bionda, N., Cryan, A. L., & Fasan, R. (2014). Bioinspired strategy for the ribosomal synthesis of thioether-bridged macrocyclic peptides in bacteria. ACS chemical biology, 9(9), 2008-2013.
110 OpgY O-propargyl-tyrosine - C12H12NO3 Tyrosine - MjTyrRS MjOpgYRS Y32A, E107P, L107F, D158A, L162A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1016/j.bmcl.2004.12.065 Deiters, A., & Schultz, P. G. (2005). In vivo incorporation of an alkyne into proteins in Escherichia coli. Bioorganic & medicinal chemistry letters, 15(5), 1521-1524.
111 AmmF 3-amino-4-mercaptomethyl-phenylalanine - C10H14N2O2 Phenylalanine - MjTyrRS MjOpgYRS Y32A, E107P, L107F, D158A, L162A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1021/acschembio.5b00119 Frost, J. R., Jacob, N. T., Papa, L. J., Owens, A. E., & Fasan, R. (2015). Ribosomal synthesis of macrocyclic peptides in vitro and in vivo mediated by genetically encoded aminothiol unnatural amino acids. ACS chemical biology, 10(8), 1805-1816.
112 AmmF 3-amino-4-mercaptomethyl-phenylalanine - C10H14N2O2 Phenylalanine - MjTyrRS MjpAzFRS Y32T, E107N, D158P, I159L, L162Q, D286R Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1021/acschembio.5b00119 Frost, J. R., Jacob, N. T., Papa, L. J., Owens, A. E., & Fasan, R. (2015). Ribosomal synthesis of macrocyclic peptides in vitro and in vivo mediated by genetically encoded aminothiol unnatural amino acids. ACS chemical biology, 10(8), 1805-1816.
113 oMeY O-methyltyrosine - C10H11NO3 Tyrosine - MjTyrRS MjpCNFRS Y32L, L65V, F108W, N109M, D158G, I159A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1021/bi101929eÿ Young, D. D., Young, T. S., Jahnz, M., Ahmad, I., Spraggon, G., & Schultz, P. G. (2011). An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry, 50(11), 1894-1900.
114 pClF p-chloro-L-phenylalanine - C9H10ClNO2 Phenylalanine - MjTyrRS MjpCNFRS Y32L, L65V, F108W, N109M, D158G, I159A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1021/bi101929eÿ Young, D. D., Young, T. S., Jahnz, M., Ahmad, I., Spraggon, G., & Schultz, P. G. (2011). An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry, 50(11), 1894-1900.
115 pFF p-fluoro-L-phenylalanine - C9H10FNO2 Phenylalanine - MjTyrRS MjpCNFRS Y32L, L65V, F108W, N109M, D158G, I159A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1021/bi101929eÿ Young, D. D., Young, T. S., Jahnz, M., Ahmad, I., Spraggon, G., & Schultz, P. G. (2011). An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry, 50(11), 1894-1900.
116 pCFAc3F p-trifluoromethylacetylphenylalanine - C12H14F3NO2 Phenylalanine - MjTyrRS MjpCNFRS Y32L, L65V, F108W, N109M, D158G, I159A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1021/bi101929eÿ Young, D. D., Young, T. S., Jahnz, M., Ahmad, I., Spraggon, G., & Schultz, P. G. (2011). An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry, 50(11), 1894-1900.
117 pPheF p-phenyl-L-phenylalanine - C15H15NO2 Phenylalanine - MjTyrRS MjpCNFRS Y32L, L65V, F108W, N109M, D158G, I159A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1021/bi101929eÿ Young, D. D., Young, T. S., Jahnz, M., Ahmad, I., Spraggon, G., & Schultz, P. G. (2011). An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry, 50(11), 1894-1900.
118 pBS benzylserine - C10H13NO3 Serine - MjTyrRS MjpCNFRS Y32L, L65V, F108W, N109M, D158G, I159A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1021/bi101929eÿ Young, D. D., Young, T. S., Jahnz, M., Ahmad, I., Spraggon, G., & Schultz, P. G. (2011). An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry, 50(11), 1894-1900.
119 NapA L-3-(2-naphthyl)alanine - C13H13NO2 Alanine structural probe MjTyrRS MjNapARS Y32L, D158P, I159A, L162Q, A167V Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1021/ja012307j Wang, L., Brock, A., & Schultz, P. G. (2002). Adding L-3-(2-Naphthyl) alanine to the genetic code of E. coli. Journal of the American Chemical Society, 124(9), 1836-1837.
120 otBuY O-tert-butyl tyrosine - C13H19NO3 Tyrosine - MjTyrRS MjpCNFRS Y32L, L65V, F108W, N109M, D158G, I159A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1021/bi101929eÿ Young, D. D., Young, T. S., Jahnz, M., Ahmad, I., Spraggon, G., & Schultz, P. G. (2011). An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry, 50(11), 1894-1900.
121 pethyF 2-amino-2-(4-ethynylphenyl)acetic acid - C10H9NO2 Phenylalanine - MjTyrRS MjpCNFRS Y32L, L65V, F108W, N109M, D158G, I159A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli 10.1021/bi101929eÿ Young, D. D., Young, T. S., Jahnz, M., Ahmad, I., Spraggon, G., & Schultz, P. G. (2011). An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry, 50(11), 1894-1900.
122 pCNF p-cyano-l-phenylalanine - C10H10N2O2 Phenylalanine - MjTyrRS pCNFRS Y32L, L65V, F108W, Q109M, D158G, I159A Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1021/ja0636690 Schultz, K. C., Supekova, L., Ryu, Y., Xie, J., Perera, R., & Schultz, P. G. (2006). A genetically encoded infrared probe. Journal of the American Chemical Society, 128(43), 13984-13985.
123 pAzF p-azido-L-phenylalanine - C9H10N4O2 Phenylalanine - MjTyrRS pAcFRS 2.t1 Y32L, E107T, F108Y, Q109M, D158G, I159C, L162R, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
124 pAcF p-acetyl-l-phenylalanine - C11H13NO3 Phenylalanine - MjTyrRS pAzFRS.2.t1 Y32L, L65V, E107T, F108W, Q109M, D158G, I159A, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
125 StyA L-Styrylalanine - C11H13NO2 alanine - MjTyrRS pAzFRS.2.t1 Y32L, L65V, E107T, F108W, Q109M, D158G, I159A, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
126 pIF p-iodo-L-phenylalanine - C9H10INO2 Phenylalanine - MjTyrRS pAzFRS.2.t1 Y32L, L65V, E107T, F108W, Q109M, D158G, I159A, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
127 pBrF p-bromo-L-phenylalanine - C9H10BrNO2 Phenylalanine - MjTyrRS pAzFRS.2.t1 Y32L, L65V, E107T, F108W, Q109M, D158G, I159A, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
128 pClF p-chloro-L-phenylalanine - C9H10ClNO2 Phenylalanine - MjTyrRS pAzFRS.2.t1 Y32L, L65V, E107T, F108W, Q109M, D158G, I159A, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
129 pMeF p-methyl-L-phenylalanine - C10H13NO2 Phenylalanine - MjTyrRS pAzFRS.2.t1 Y32L, L65V, E107T, F108W, Q109M, D158G, I159A, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
130 pCF3F p-trifluoromethyl-L-phenylalanine - C10H10F3NO2 Phenylalanine - MjTyrRS pAzFRS.2.t1 Y32L, L65V, E107T, F108W, Q109M, D158G, I159A, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
131 OMeY o-methyl-L-tyrosine - C10H13NO3 Tyrosine - MjTyrRS pAzFRS.2.t1 Y32L, L65V, E107T, F108W, Q109M, D158G, I159A, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
132 NapA L-3-(2-naphthyl)alanine - C13H13NO2 Alanine - MjTyrRS pAzFRS.2.t1 Y32L, L65V, E107T, F108W, Q109M, D158G, I159A, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
133 pAcF p-acetyl-l-phenylalanine - C9H10N4O2 Phenylalanine - MjTyrRS pAcFRS 2.t1 Y32L, E107T, F108Y, Q109M, D158G, I159C, L162R, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
134 StyA L-Styrylalanine - C11H13NO2 alanine - MjTyrRS pAcFRS 2.t1 Y32L, E107T, F108Y, Q109M, D158G, I159C, L162R, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
135 pIF p-iodo-L-phenylalanine - C9H10INO2 Phenylalanine - MjTyrRS pAcFRS 2.t1 Y32L, E107T, F108Y, Q109M, D158G, I159C, L162R, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
136 oMeY o-methyl-L-tyrosine - C10H13NO3 Tyrosine - MjTyrRS pAcFRS 2.t1 Y32L, E107T, F108Y, Q109M, D158G, I159C, L162R, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
137 pCF3F p-trifluoromethyl-L-phenylalanine NaN C10H10F3NO2 Phenylalanine NaN MjTyrRS pAcFRS 2.t1 Y32L, E107T, F108Y, Q109M, D158G, I159C, L162R, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
138 pBuF p-tert-butylphenylalanine - C13H19NO2 Phenylalanine - MjTyrRS pAcFRS 2.t1 Y32L, E107T, F108Y, Q109M, D158G, I159C, L162R, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
139 BuY O-tert-butyl-L-tyrosine - C13H19NO3 Tyrosine - MjTyrRS pAcFRS 2.t1 Y32L, E107T, F108Y, Q109M, D158G, I159C, L162R, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
140 NapA L-3-(2-naphthyl)alanine - C13H13NO2 Alanine - MjTyrRS pAcFRS 2.t1 Y32L, E107T, F108Y, Q109M, D158G, I159C, L162R, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.
141 pPheF p-phenyl-L-phenylalanine - C15H15NO2 Phenylalanine - MjTyrRS pAcFRS 2.t1 Y32L, E107T, F108Y, Q109M, D158G, I159C, L162R, R257G Fasta Methanococcus jannaschii mutRNA opt CUA CCGGCGGTAGTTCAGCAGGGCAGAACGGCGGACTCTAAATCCGCATGGCAGGGGTTCAAATCCCCTCCGCCGGACCA CUA Methanococcus jannaschii Escherichia coli https://doi.org/10.1038/nbt.3372 Amiram, M., Haimovich, A. D., Fan, C., Wang, Y. S., Aerni, H. R., Ntai, I., ... & Isaacs, F. J. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature biotechnology, 33(12), 1272-1279.