In order to produce our compartments and obtain a good yield, we opted for the E.coli strain BL21, which is a commonly used expression strain for recombinant proteins expression [78]. BL21 cells are a cell line of E.coli, usually multiply quicker than other cell types. In fact, BL21 cells lack flagella due to a significant loss in fli genes, which are necessary for the manufacture of flagellar proteins [79].
According to some scientists, this partly explains why BL21 cells grow faster, as the process of flagellar production and assembly requires a lot of energy. Furthermore, a second T2S secretion pathway allows BL21 cells to release more proteins than other experimental strains [80], that is why secretion of the foreign proteins shows sometimes better results than cytoplasmic synthesis [80][81].
In particular, we used the variant BL21(DE3), which lacks two important proteases, leading to the reduction of the degradation of heterologous proteins expressed in the strain. Plus, phage T7 RNA polymerase (T7RNAP), which is regulated by the lacUV5 promoter, is present in the BL21(DE3) strain [78][80], and is much faster than the E.coli RNA polymerase, which goes to our benefit [82].
When the free inducer isopropyl-D-1-thiogalactopyranoside (IPTG) is added to expression plasmids with genes of interest cloned under the control of a T7 promoter, protein synthesis can be initiated. This technology gives us complete control over the high selectivity and activity of protein synthesis induction. All of these characteristics made BL21(DE3) the ideal host [80].
For our project we also used the E.coli strain MG1655. By using this strain, we wanted to test if our toolbox could be formed in what is the most common laboratory K-12 strain, which approximates the E.coli wildtype, as sequenced by the Blattner laboratory [83].
This genomically recoded MG1655 strain was a gift from George Church (Addgene plasmid # 49018) [84]. This strain was designed to use for studies using non-standard amino acids. All 321 UAG stop codons (changed to UAA) and release factor 1 were removed from its genome (E. coli MG1655 Delta (ybhB-bioAB)::zeoR Delta prfA).
C321.ΔA.exp was a gift from George Church (Addgene plasmid # 49018).
To not overload the bacteria with the new proteins, we decided to test our toolbox on genome reduced bacteria. In this kind of organisms, genes that are not essential for growth are eliminated and energy and substrates that are usually required for less productive purposes are made available for engineering goals.
In fact, researchers found that E. coli bacteria can survive with approximately 30% of their genome removed. Genome-reduced bacteria have several benefits in biotechnology and synthetic biology, since more recombinant genes can be inserted into chromosomes and fewer cell resources are dedicated for uses other than biotechnological ones [85].
Additionally, the ability to enhance the genetic circuits may be controlled by removing unneeded genes and/or metabolic pathways [86][87].
For cells maintained in a stable environment in the lab, the genomic portions that have contributed to adaptation to external disturbance, such as stress response genes [86][88], insertion sequence (IS) elements and transposons, appear to be unneeded [89]. Due to adverse genome alteration, the ISs and transposons in particular may produce unexpected mutagenesis and be problematic in genetic engineering [90][91].
Additionally, it was hypothesized that the preservation of these superfluous genes would raise the cost of DNA replication [92][93] and that the expression of superfluous genes would hinder microbial development [94]. These unnecessary genomic regions might be removed, leaving cells with a clear genetic makeup and straightforward metabolic pathways [86].
Genome reduced bacteria can also be further metabolically engineered to improve the production of certain proteins or substances. In fact, for example, by removing the native threonine dehydrogenase and threonine transporter genes, as well as inserting a mutant threonine exporter gene, feedback-resistant biosynthetic enzymes were overexpressed in the genome reduced E. coli strain MDS42 in order to increase threonine synthesis. Surprisingly, l-threonine production by the resultant strain MDS-205 was 83% higher compared to the wild-type. This proves that by eliminating non-essential genes, it is possible to produce production strains that are suitable for the industrial world [95][96].
Kato et al (Tokyo Metropolitan University Group) constructed a series of large-scale chromosomal deletion mutants of E. coli (derivative of MG1655) that lack between 2.4. and 29.7% of the parental chromosome [97][98][99].
The following strains we used to express our microcompartments:
- ME 5000 (parental, non-deleted strain)
- ME 5010 (2.4% deleted)
- ME 5119 (15.8% deleted)
- ME 5125 (29.7% deleted)
During our research about genome reduced bacteria, we came across the Clean Genome MDS69 strain from Scarab Genomics. This strain has 20.32% of its genes deleted and is derived from the MDS42 genome reduced strain described in [100], which is a derivate of MG1655 as well.
References
[1] Y. G. Zhao and H. Zhang, “Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates,” Dev. Cell, vol. 55, no. 1, pp. 30–44, 2020, doi: 10.1016/j.devcel.2020.06.033.
[2] E. Gomes and J. Shorter, “The molecular language of membraneless organelles,” J. Biol. Chem., vol. 294, no. 18, pp. 7115–7127, 2019, doi: 10.1074/jbc.TM118.001192.
[3] J. M. Volland et al., “A centimeter-long bacterium with DNA contained in metabolically active, membrane-bound organelles,” Science (80-. )., vol. 376, no. 6600, pp. 1453–1458, 2022, doi: https://doi.org/10.1101/2022.02.16.480423.
[4] C. A. Kerfeld, C. Aussignargues, J. Zarzycki, F. Cai, and M. Sutter, “Bacterial microcompartments,” Nat. Rev. Microbiol., vol. 16, no. 5, pp. 277–290, 2018, doi: 10.1038/nrmicro.2018.10.
[5] A. H. Chen and P. A. Silver, “Designing biological compartmentalization,” Trends Cell Biol., vol. 22, no. 12, pp. 662–670, 2012, doi: 10.1016/j.tcb.2012.07.002.
[6] A. M. Ladouceur et al., “Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation,” Proc. Natl. Acad. Sci. U. S. A., vol. 117, no. 31, pp. 18540–18549, 2020, doi: 10.1073/pnas.2005019117.
[7] B. Guilhas et al., “ATP-Driven Separation of Liquid Phase Condensates in Bacteria,” Mol. Cell, vol. 79, no. 2, pp. 293-303.e4, 2020, doi: 10.1016/j.molcel.2020.06.034.
[8] N. Al-Husini, D. T. Tomares, O. Bitar, W. S. Childers, and J. M. Schrader, “α-Proteobacterial RNA Degradosomes Assemble Liquid-Liquid Phase-Separated RNP Bodies,” Mol. Cell, vol. 71, no. 6, pp. 1027-1039.e14, 2018, doi: 10.1016/j.molcel.2018.08.003.
[9] X. Jin et al., “Membraneless organelles formed by liquid-liquid phase separation increase bacterial fitness,” Sci. Adv., vol. 7, no. 43, 2021, doi: 10.1126/sciadv.abh2929.
[10] W. Bonacci et al., “Modularity of a carbon-fixing protein organelle,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 2, pp. 478–483, 2012, doi: 10.1073/pnas.1108557109.
[11] B. B. Menon, Z. Dou, S. Heinhorst, J. M. Shively, and G. C. Cannon, “Halothiobacillus neapolitanus carboxysomes sequester heterologous and chimeric RubisCO species,” PLoS One, vol. 3, no. 10, 2008, doi: 10.1371/journal.pone.0003570.
[12] D. F. Savage, B. Afonso, A. H. Chen, and P. A. Silver, “Bacterial Carbon Fixation Machinery,” Science (80-. )., vol. 327, no. March, pp. 1258–1261, 2010.
[13] M. Fischbach and C. A. Voigt, “Prokaryotic gene clusters: A rich toolbox for synthetic biology,” Biotechnol. J., vol. 5, no. 12, pp. 1277–1296, 2010, doi: 10.1002/biot.201000181.
[14] H. Chen, J. Wilson, S. Ottinger, Q. Gan, and C. Fan, “Introducing noncanonical amino acids for studying and engineering bacterial microcompartments,” Curr. Opin. Microbiol., vol. 61, pp. 67–72, 2021, doi: 10.1016/j.mib.2021.03.004.
[15] J. C. Jackson, S. P. Duffy, K. R. Hess, and R. A. Mehl, “Improving nature’s enzyme active site with genetically encoded unnatural amino acids,” J. Am. Chem. Soc., vol. 128, no. 34, pp. 11124–11127, 2006, doi: 10.1021/ja061099y.
[16] I. Drienovská and G. Roelfes, “Expanding the enzyme universe with genetically encoded unnatural amino acids,” Nat. Catal., vol. 3, no. 3, pp. 193–202, 2020, doi: 10.1038/s41929-019-0410-8.
[17] D. Choe, S. Cho, S. C. Kim, and B. K. Cho, “Minimal genome: Worthwhile or worthless efforts toward being smaller?,” Biotechnol. J., vol. 11, no. 2, pp. 199–211, 2016, doi: 10.1002/biot.201400838.
[18] M. McNutt, “Climate change impacts,” Science (80-. )., vol. 341, no. 6145, p. 435, 2013, doi: 10.1126/science.1243256.
[19] F. Johnsson, J. Kjärstad, and J. Rootzén, “The threat to climate change mitigation posed by the abundance of fossil fuels,” Clim. Policy, vol. 19, no. 2, pp. 258–274, 2019, doi: 10.1080/14693062.2018.1483885.
[20] M. Höök and X. Tang, “Depletion of fossil fuels and anthropogenic climate change-A review,” Energy Policy, vol. 52, pp. 797–809, 2013, doi: 10.1016/j.enpol.2012.10.046.
[21] J. Du, Z. Shao, and H. Zhao, “Engineering microbial factories for synthesis of value-added products,” J. Ind. Microbiol. Biotechnol., vol. 38, no. 8, pp. 873–890, 2011, doi: 10.1007/s10295-011-0970-3.
[22] N. Ferrer-Miralles, J. Domingo-Espín, J. Corchero, E. Vázquez, and A. Villaverde, “Microbial factories for recombinant pharmaceuticals,” Microb. Cell Fact., vol. 8, pp. 1–8, 2009, doi: 10.1186/1475-2859-8-17.
[23] L. Sanchez-Garcia, L. Martín, R. Mangues, N. Ferrer-Miralles, E. Vázquez, and A. Villaverde, “Recombinant pharmaceuticals from microbial cells: A 2015 update,” Microb. Cell Fact., vol. 15, no. 1, pp. 1–7, 2016, doi: 10.1186/s12934-016-0437-3.
[24] S. C. Wenzel and R. Müller, “Myxobacteria - ‘microbial factories’ for the production of bioactive secondary metabolites,” Mol. Biosyst., vol. 5, no. 6, pp. 567–574, 2009, doi: 10.1039/b901287g.
[25] N. S. Lau, M. Matsui, and A. A. A. Abdullah, “Cyanobacteria: Photoautotrophic Microbial Factories for the Sustainable Synthesis of Industrial Products,” Biomed Res. Int., vol. 2015, 2015, doi: 10.1155/2015/754934.
[26] E. Cornejo, N. Abreu, and A. Komeili, “Compartmentalization and organelle formation in bacteria,” Curr. Opin. Cell Biol., vol. 26, no. 1, pp. 132–138, Feb. 2014, doi: 10.1016/j.ceb.2013.12.007.
[27] T. W. Giessen and P. A. Silver, “Encapsulation as a Strategy for the Design of Biological Compartmentalization,” J. Mol. Biol., vol. 428, no. 5, pp. 916–927, 2016, doi: 10.1016/j.jmb.2015.09.009.
[28] W. Martin, “Evolutionary origins of metabolic compartmentalization in eukaryotes,” Philos. Trans. R. Soc. B Biol. Sci., vol. 365, no. 1541, pp. 847–855, 2010, doi: 10.1098/rstb.2009.0252.
[29] H. Kirst and C. A. Kerfeld, “Bacterial microcompartments: Catalysis-enhancing metabolic modules for next generation metabolic and biomedical engineering,” BMC Biol., vol. 17, no. 1, pp. 1–11, 2019, doi: 10.1186/s12915-019-0691-z.
[30] C. M. Agapakis, P. M. Boyle, and P. A. Silver, “Natural strategies for the spatial optimization of metabolism in synthetic biology,” Nat. Chem. Biol., vol. 8, no. 6, pp. 527–535, 2012, doi: 10.1038/nchembio.975.
[31] C. Liu et al., “Metabolic Engineering Mevalonate Pathway Mediated by RNA Scaffolds for Mevalonate and Isoprene Production in,” 2022, doi: 10.1021/acssynbio.2c00226.
[32] H. Kirst, B. H. Ferlez, S. N. Lindner, C. A. R. Cotton, A. Bar-Even, and C. A. Kerfeld, “Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate,” Proc. Natl. Acad. Sci. U. S. A., vol. 119, no. 8, pp. 1–10, 2022, doi: 10.1073/pnas.2116871119.
[33] M. G. Klein et al., “Identification and Structural Analysis of a Novel Carboxysome Shell Protein with Implications for Metabolite Transport,” J. Mol. Biol., vol. 392, no. 2, pp. 319–333, 2009, doi: 10.1016/j.jmb.2009.03.056.
[34] M. J. Lee, D. J. Palmer, and M. J. Warren, “Biotechnological Advances in Bacterial Microcompartment Technology,” Trends Biotechnol., vol. 37, no. 3, pp. 325–336, 2019, doi: 10.1016/j.tibtech.2018.08.006.
[35] J. K. Lassila, S. L. Bernstein, J. N. Kinney, S. D. Axen, and C. A. Kerfeld, “Assembly of robust bacterial microcompartment shells using building blocks from an organelle of unknown function,” J. Mol. Biol., vol. 426, no. 11, pp. 2217–2228, 2014, doi: 10.1016/j.jmb.2014.02.025.
[36] A. Hagen, M. Sutter, N. Sloan, and C. A. Kerfeld, “Programmed loading and rapid purification of engineered bacterial microcompartment shells,” Nat. Commun., vol. 9, no. 1, pp. 1–10, 2018, doi: 10.1038/s41467-018-05162-z.
[37] B. Zakeri et al., “Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 12, 2012, doi: 10.1073/pnas.1115485109.
[38] T. W. Giessen, “Encapsulins: Microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science,” Curr. Opin. Chem. Biol., vol. 34, pp. 1–10, 2016, doi: 10.1016/j.cbpa.2016.05.013.
[39] J. A. Jones and T. W. Giessen, “Advances in encapsulin nanocompartment biology and engineering,” Biotechnol. Bioeng., vol. 118, no. 1, pp. 491–505, 2021, doi: 10.1002/bit.27564.
[40] J. Fontana et al., “Phage capsid-like structure of Myxococcus xanthus encapsulin, a protein shell that stores iron,” Microsc. Microanal., vol. 20, no. 3, pp. 1244–1245, 2014, doi: 10.1017/S1431927614007958.
[41] M. Sutter et al., “Structural basis of enzyme encapsulation into a bacterial nanocompartment,” Nat. Struct. Mol. Biol., vol. 15, no. 9, pp. 939–947, 2008, doi: 10.1038/nsmb.1473.
[42] W. J. Altenburg, N. Rollins, P. A. Silver, and T. W. Giessen, “Exploring targeting peptide-shell interactions in encapsulin nanocompartments,” Sci. Rep., vol. 11, no. 1, pp. 1–9, 2021, doi: 10.1038/s41598-021-84329-z.
[43] A. Van de Steen et al., “Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system,” Synth. Syst. Biotechnol., vol. 6, no. 3, pp. 231–241, 2021, doi: 10.1016/j.synbio.2021.09.001.
[44] I. Boyton, S. C. Goodchild, D. Diaz, A. Elbourne, L. Collins-Praino, and A. Care, “Exploring the Self-Assembly of Encapsulin Protein Nanocages from Different Structural Classes,” bioRxiv, 2021, doi: 10.1101/2021.06.06.447285.
[45] C. A. McHugh et al., “A virus capsid‐like nanocompartment that stores iron and protects bacteria from oxidative stress,” EMBO J., vol. 33, no. 17, pp. 1896–1911, 2014, doi: 10.15252/embj.201488566.
[46] Y. H. Lau, T. W. Giessen, W. J. Altenburg, and P. A. Silver, “Prokaryotic nanocompartments form synthetic organelles in a eukaryote,” Nat. Commun., vol. 9, no. 1, 2018, doi: 10.1038/s41467-018-03768-x.
[47] D. R. Hamill, A. F. Severson, J. C. Carter, and B. Bowerman, “Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains,” Dev. Cell, vol. 3, no. 5, pp. 673–684, 2002, doi: 10.1016/S1534-5807(02)00327-1.
[48] J. B. Woodruff, B. Ferreira Gomes, P. O. Widlund, J. Mahamid, A. Honigmann, and A. A. Hyman, “The Centrosome Is a Selective Condensate that Nucleates Microtubules by Concentrating Tubulin,” Cell, vol. 169, no. 6, pp. 1066-1077.e10, 2017, doi: 10.1016/j.cell.2017.05.028.
[49] A. K. Tiwary and Y. Zheng, “Protein phase separation in mitosis,” Curr. Opin. Cell Biol., vol. 60, no. 1, pp. 92–98, Oct. 2019, doi: 10.1016/j.ceb.2019.04.011.
[50] C. D. Reinkemeier, G. E. Girona, and E. A. Lemke, “Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes,” Science (80-. )., vol. 363, no. 6434, 2019, doi: 10.1126/science.aaw2644.
[51] L. Wang, A. Brock, B. Herberich, and P. G. Schultz, “Expanding the Genetic Code of Escherichia coli,” Science (80-. )., vol. 292, no. 5516, pp. 498–500, Apr. 2001, doi: 10.1126/science.1060077.
[52] M. Amiram et al., “Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids,” Nat. Biotechnol., vol. 33, no. 12, pp. 1272–1279, 2015, doi: 10.1038/nbt.3372.
[53] L. Wang and P. G. Schultz, “A general approach for the generation of orthogonal tRNAs,” Chem. Biol., vol. 8, no. 9, pp. 883–890, 2001, doi: 10.1016/S1074-5521(01)00063-1.
[54] E. C. Fischer et al., “New codons for efficient production of unnatural proteins in a semisynthetic organism,” Nat. Chem. Biol., vol. 16, no. 5, pp. 570–576, 2020, doi: 10.1038/s41589-020-0507-z.
[55] K. C. Schultz, L. Supekova, Y. Ryu, J. Xie, R. Perera, and P. G. Schultz, “A genetically encoded infrared probe,” J. Am. Chem. Soc., vol. 128, no. 43, pp. 13984–13985, 2006, doi: 10.1021/ja0636690.
[56] Y. Won, A. D. Pagar, M. D. Patil, P. E. Dawson, and H. Yun, “Recent Advances in Enzyme Engineering through Incorporation of Unnatural Amino Acids,” Biotechnol. Bioprocess Eng., vol. 24, no. 4, pp. 592–604, 2019, doi: 10.1007/s12257-019-0163-x.
[57] Q. Gan, B. P. Lehman, T. A. Bobik, and C. Fan, “Expanding the genetic code of Salmonella with non-canonical amino acids,” Sci. Rep., vol. 6, no. November, pp. 1–7, 2016, doi: 10.1038/srep39920.
[58] K. J. Lee, D. Kang, and H. S. Park, “Site-Specific Labeling of Proteins Using Unnatural Amino Acids,” Mol. Cells, vol. 42, no. 5, pp. 386–396, 2019, doi: 10.14348/molcells.2019.0078.
[59] N. D. Pham, R. B. Parker, and J. J. Kohler, “Photocrosslinking approaches to interactome mapping,” Curr. Opin. Chem. Biol., vol. 17, no. 1, pp. 90–101, 2013, doi: 10.1016/j.cbpa.2012.10.034.
[60] N. Wenner, “The Production of Indigo Dye from Plants,” Fibershed, no. December, pp. 1–13, 2017, [Online]. Available: https://bit.ly/3ymh4Xp.
[61] T. M. Hsu et al., “Sustainable Indigo Dyeing Strategy,” Nat. Publ. Gr., vol. 14, no. january, pp. 256–261, 2018, doi: 10.1038/nchembio.2552.Employing.
[62] K. Aino, K. Hirota, T. Okamoto, Z. Tu, H. Matsuyama, and I. Yumoto, “Microbial communities associated with indigo fermentation that thrive in anaerobic alkaline environments,” Front. Microbiol., vol. 9, no. SEP, pp. 1–16, 2018, doi: 10.3389/fmicb.2018.02196.
[63] S. Bhatt, A. Anyanful, and D. Kalman, “CsrA and TnaB coregulate tryptophanase activity to promote exotoxin-induced killing of Caenorhabditis elegans by enteropathogenic Escherichia coli,” J. Bacteriol., vol. 193, no. 17, pp. 4516–4522, 2011, doi: 10.1128/JB.05197-11.
[64] G. Li and K. D. Young, “Indole production by the tryptophanase TnaA in escherichia coli is determined by the amount of exogenous tryptophan,” Microbiol. (United Kingdom), vol. 159, no. 2, pp. 402–410, 2013, doi: 10.1099/mic.0.064139-0.
[65] H. Yin et al., “Efficient Bioproduction of Indigo and Indirubin by Optimizing a Novel Terpenoid Cyclase XiaI in Escherichia coli,” ACS Omega, vol. 6, no. 31, pp. 20569–20576, 2021, doi: 10.1021/acsomega.1c02679.
[66] S. Nam et al., “Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling,” Mol. Oncol., vol. 6, no. 3, pp. 276–283, 2012, doi: 10.1016/j.molonc.2012.02.002.
[67] A. B. Richards et al., “Trehalose: A review of properties, history of use and human tolerance, and results of multiple safety studies,” Food Chem. Toxicol., vol. 40, no. 7, pp. 871–898, 2002, doi: 10.1016/S0278-6915(02)00011-X.
[68] H. Li et al., “Enhanced production of trehalose in Escherichia coli by homologous expression of otsBA in the presence of the trehalase inhibitor, validamycin A, at high osmolarity,” J. Biosci. Bioeng., vol. 113, no. 2, pp. 224–232, 2012, doi: 10.1016/j.jbiosc.2011.09.018.
[69] C. Schiraldi, I. Di Lernia, and M. De Rosa, “Trehalose production: Exploiting novel approaches,” Trends Biotechnol., vol. 20, no. 10, pp. 420–425, 2002, doi: 10.1016/S0167-7799(02)02041-3.
[70] R. Ruhal, R. Kataria, and B. Choudhury, “Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation,” Microb. Biotechnol., vol. 6, no. 5, pp. 493–502, 2013, doi: 10.1111/1751-7915.12029.
[71] G. Iturriaga, R. Suárez, and B. Nova-Franco, “Trehalose metabolism: From osmoprotection to signaling,” Int. J. Mol. Sci., vol. 10, no. 9, pp. 3793–3810, 2009, doi: 10.3390/ijms10093793.
[72] A. R. Strom and I. Kaasen, “Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression,” Mol. Microbiol., vol. 8, no. 2, pp. 205–210, 1993, doi: 10.1111/j.1365-2958.1993.tb01564.x.
[73] A. Patist and H. Zoerb, “Preservation mechanisms of trehalose in food and biosystems,” Colloids Surfaces B Biointerfaces, vol. 40, no. 2, pp. 107–113, 2005, doi: 10.1016/j.colsurfb.2004.05.003.
[74] R. J. Dutton, D. Boyd, M. Berkmen, and J. Beckwith, “Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 33, pp. 11933–11938, 2008, doi: 10.1073/pnas.0804621105.
[75] D. Hatlem, T. Trunk, D. Linke, and J. C. Leo, “Catching a SPY: Using the SpyCatcher-SpyTag and related systems for labeling and localizing bacterial proteins,” Int. J. Mol. Sci., vol. 20, no. 9, 2019, doi: 10.3390/ijms20092129.
[76] H. J. Kang and E. N. Baker, “Intramolecular isopeptide bonds: Protein crosslinks built for stress?,” Trends Biochem. Sci., vol. 36, no. 4, pp. 229–237, 2011, doi: 10.1016/j.tibs.2010.09.007.
[77] G. Veggiani et al., “Programmable polyproteams built using twin peptide superglues,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 5, pp. 1202–1207, 2016, doi: 10.1073/pnas.1519214113.
[78] S. A. H. Heyde and M. H. H. Nørholm, “Tailoring the evolution of BL21(DE3) uncovers a key role for RNA stability in gene expression toxicity,” Commun. Biol., vol. 4, no. 1, pp. 1–9, 2021, doi: 10.1038/s42003-021-02493-4.
[79] H. Jeong et al., “Genome Sequences of Escherichia coli B strains REL606 and BL21(DE3),” J. Mol. Biol., vol. 394, no. 4, pp. 644–652, 2009, doi: 10.1016/j.jmb.2009.09.052.
[80] G. L. Rosano, E. S. Morales, and E. A. Ceccarelli, “New tools for recombinant protein production in Escherichia coli: A 5-year update,” Protein Sci., vol. 28, no. 8, pp. 1412–1422, 2019, doi: 10.1002/pro.3668.
[81] L. A. Burdette, S. A. Leach, H. T. Wong, and D. Tullman-Ercek, “Developing Gram-negative bacteria for the secretion of heterologous proteins,” Microb. Cell Fact., vol. 17, no. 1, pp. 1–16, 2018, doi: 10.1186/s12934-018-1041-5.
[82] G. Lozano Terol, J. Gallego-Jara, R. A. Sola Martínez, A. Martínez Vivancos, M. Cánovas Díaz, and T. de Diego Puente, “Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21,” Front. Microbiol., vol. 12, no. June, pp. 1–12, 2021, doi: 10.3389/fmicb.2021.682001.
[83] F. R. Blattner et al., “The complete genome sequence of Escherichia coli K-12,” Science (80-. )., vol. 277, no. 5331, pp. 1453–1462, 1997, doi: 10.1126/science.277.5331.1453.
[84] M. J. Lajoie et al., “Genomically Recoded Organisms Expand Biological Functions,” Science (80-. )., vol. 342, no. 6156, pp. 357–360, Oct. 2013, doi: 10.1126/science.1241459.
[85] K. Dryden, D. Lina, and N. Fabris, “Minicells from Highly Genome Reduced,” 2021.
[86] M. Kurokawa and B. W. Ying, “Experimental challenges for reduced genomes: The cell model escherichia coli,” Microorganisms, vol. 8, no. 1, 2020, doi: 10.3390/microorganisms8010003.
[87] C. Pál, B. Papp, and G. Pósfai, “The dawn of evolutionary genome engineering,” Nat. Rev. Genet., vol. 15, no. 7, pp. 504–512, 2014, doi: 10.1038/nrg3746.
[88] S. M. Chiang and H. E. Schellhorn, “Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria,” Arch. Biochem. Biophys., vol. 525, no. 2, pp. 161–169, 2012, doi: 10.1016/j.abb.2012.02.007.
[89] S. Babakhani and M. Oloomi, “Transposons: the agents of antibiotic resistance in bacteria,” J. Basic Microbiol., vol. 58, no. 11, pp. 905–917, 2018, doi: 10.1002/jobm.201800204.
[90] S. Müller, H. Harms, and T. Bley, “Origin and analysis of microbial population heterogeneity in bioprocesses,” Curr. Opin. Biotechnol., vol. 21, no. 1, pp. 100–113, 2010, doi: 10.1016/j.copbio.2010.01.002.
[91] P. Rugbjerg, N. Myling-Petersen, A. Porse, K. Sarup-Lytzen, and M. O. A. Sommer, “Diverse genetic error modes constrain large-scale bio-based production,” Nat. Commun., vol. 9, no. 1, 2018, doi: 10.1038/s41467-018-03232-w.
[92] S. J. Giovannoni et al., “Genetics: Genome streamlining in a cosmopolitan oceanic bacterium,” Science (80-. )., vol. 309, no. 5738, pp. 1242–1245, 2005, doi: 10.1126/science.1114057.
[93] D. J. Martínez-Cano et al., “Evolution of small prokaryotic genomes,” Front. Microbiol., vol. 6, no. JAN, pp. 1–23, 2015, doi: 10.3389/fmicb.2014.00742.
[94] M. Kafri, E. Metzl-Raz, G. Jona, and N. Barkai, “The Cost of Protein Production,” Cell Rep., vol. 14, no. 1, pp. 22–31, 2016, doi: 10.1016/j.celrep.2015.12.015.
[95] M. Juhas, D. R. Reuß, B. Zhu, and F. M. Commichau, “Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering,” Microbiol. (United Kingdom), vol. 160, pp. 2341–2351, 2014, doi: 10.1099/mic.0.079376-0.
[96] J. H. Lee et al., “Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production,” Microb. Cell Fact., vol. 8, no. 1, pp. 1–12, 2009, doi: 10.1186/1475-2859-8-2.
[97] M. Hashimoto et al., “Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome,” Mol. Microbiol., vol. 55, no. 1, pp. 137–149, 2005, doi: 10.1111/j.1365-2958.2004.04386.x.
[98] H. Yu et al., “Minicells from Highly Genome Reduced Escherichia coli: Cytoplasmic and Surface Expression of Recombinant Proteins and Incorporation in the Minicells,” ACS Synth. Biol., vol. 10, no. 10, pp. 2465–2477, 2021, doi: 10.1021/acssynbio.1c00375.
[99] J. I. Kato and M. Hashimoto, “Construction of consecutive deletions of the Escherichia coli chromosome,” Mol. Syst. Biol., vol. 3, no. 132, pp. 1–7, 2007, doi: 10.1038/msb4100174.
[100] G. Pósfai, K. Umenhoffer, V. Kolisnychenko, B. Stahl, and S. S. Sharma, “Emergent Properties of,” vol. 1044, no. 2006, pp. 1044–1047, 2013.