Modeling
In this part, we used numerical models to simulate the following two problems: (1) the relationship between the drug resistance of tumor cells and the concentration of TMZ; (2) how the cell activities of Lv-sh1 and Lv-sh2 change with time after knocking down the mRNA level of PDRG1 in tumor cells (T98G and U118). Tables 1~4 are the corresponding experimental data.
Here, we used Model (1) to simulate the drug resistance of tumor cells change with TMZ concentration.
f(x)=(p1∙x+p2 )/(x+q1) (1)
Where p1, p2 and q1 are the parameters need to be determined.
Model (2) was applied to simulate the relationship between cell activity and time.
g(x)=p'1∙x2+p'2∙x +p'3 (2)
Where p'1, p'2 and p'3 are the parameters need to be fitted.
Table 1. Experimental results of drug resistance of tumor cells (T98G and T98G-R)
TMZ T98G(%) T98G-R(%)
0 100.0000033 100
50 90.86329 95.398697
100 57.39058667 87.50356
200 48.1125 77.973933
400 26.16935 79.046223
800 10.25597833 67.699043
Table 2. Experimental results of drug resistance of tumor cells (U118 and U118-R) change with TMZ concentration..
TMZ U118(%) U118-R(%)
0 100.00001 99.999973
200 83.5312 92.48128
400 71.27007333 86.48513
800 45.79195667 79.899577
1600 16.81491333 70.371573
3200 0.770985333 58.765933
Table 3. After knocking down the mRNA level of PDRG1 in tumor cells (T98G), the activity of three kinds of cells (Lv-shNC, Lv-sh1, and Lv-sh2) changed with time.
Time(h) Lv-shNC Lv-sh1 Lv-sh2
0 0.48386 0.47354 0.47144
24 0.80324 0.7465 0.8041
48 1.21532 0.93478 1.06982
72 1.880275 1.23156 1.32092
Table 4. After knocking down the mRNA level of PDRG1 in tumor cells (U118), the activity of three kinds of cells (Lv-shNC, Lv-sh1, and Lv-sh2) changed with time.
Time(h) Lv-shNC Lv-sh1 Lv-sh2
0 0.1616 0.1626 0.1768
24 0.2638 0.2506 0.2432
48 0.6214 0.4212 0.4334
72 1.1634 0.6442 0.737
Coding
    
      clear;clc;
      %% exp.data--TMZ T98
      Data_1=importdata('TMZ_T98.txt');
      TMZ1=Data_1(:,1); 
      T98=Data_1(:,2); 
      T98R=Data_1(:,3);
      figure,plot(TMZ1,T98,'*',TMZ1,T98R,'o')
      hold on
      % model simulation
      % f(x) = (p1*x + p2) / (x + q1)
      p1=[-16.23 60.62];
      p2=[2.3e+04 2.216e+04];
      q1=[223.7 220.2];
      % TMZ
      x_1=0:2:1500;
      x_1=x_1';
      % T98
      y_t98= (p1(1)*x_1 + p2(1))./(x_1 + q1(1));
      % T98R
      y_t98R= (p1(2)*x_1 + p2(2))./(x_1 + q1(2));
      plot(x_1,y_t98,'-',x_1,y_t98R,'--')
      % 
      syms x
      ans1=solve((-16.23*x+2.3e+04)/(x+223.7)==0,x)
      ans2=solve((60.62*x+2.216e+04)/(x+220.2)==0,x)
      %% exp.data--TMZ U118
      Data_2=importdata('TMZ_U118.txt');
      TMZ2=Data_2(:,1); 
      U118=Data_2(:,2); 
      U118_R=Data_2(:,3);
      figure,plot(TMZ2,U118,'*',TMZ2,U118_R,'o')
      hold on
      % model simulation
      %  f(x) = (p1*x + p2) / (x + q1)
      p1_u=[-43.94 38.56];
      p2_u=[1.326e+05 1.641e+05];
      q1_u=[1301 1651];
      % TMZ
      x_2=0:5:3500;
      x_2=x_2';
      % T98
      y_u118= (p1_u(1)*x_2 + p2_u(1))./(x_2 + q1_u(1));
      % T98R
      y_u118R= (p1_u(2)*x_2 + p2_u(2))./(x_2 + q1_u(2));
      plot(x_2,y_u118,'-',x_2,y_u118R,'--')
      %
      syms x
      ans3=solve((-43.94*x+1.326e+05)/(x+1301)==0,x)
      ans4=solve((38.56*x+1.641e+05)/(x+1651)==0,x)
      %% exp.data--T98 sh
      Data_3=importdata('T98G.txt');
      Time1=Data_3(:,1); 
      shNC=Data_3(:,2); 
      sh1=Data_3(:,3);
      sh2=Data_3(:,4);
      figure,plot(Time1,shNC,'*',Time1,sh1,'o',Time1,sh2,'s')
      hold on
      % model simulation
      % f(x) = p1*x^2 + p2*x + p3
      p1_T=[0.00015 1.034e-05 -3.54e-05];
      p2_T=[0.008373 0.009515 0.01427];
      p3_T=[0.4919 0.4832 0.4741];
      time1=0:1:80;
      time1=time1';
      shNC_T=p1_T(1)*time1.^2 + p2_T(1)*time1 + p3_T(1);
      sh1_T=p1_T(2)*time1.^2 + p2_T(2)*time1 + p3_T(2);
      sh2_T=p1_T(3)*time1.^2 + p2_T(3)*time1 + p3_T(3);
      plot(time1,shNC_T,'-',time1,sh1_T,'--',time1,sh2_T,'.-')
      %% exp.data--U118 sh
      Data_4=importdata('U118.txt');
      Time2=Data_4(:,1); 
      shNC_u=Data_4(:,2); 
      sh1_u=Data_4(:,3);
      sh2_u=Data_4(:,4);
      figure,plot(Time2,shNC_u,'*',Time2,sh1_u,'o',Time2,sh2_u,'s')
      hold on
      % model simulation
      % f(x) = p1*x^2 + p2*x + p3
      p1_U=[0.0001909 5.859e-05 0.000103];
      p2_U=[0.0002687 0.002512 0.0003825];
      p3_U=[0.1581 0.1611 0.1763];
      time2=0:1:80;
      time2=time2';
      shNC_U118=p1_U(1)*time2.^2 + p2_U(1)*time2 + p3_U(1);
      sh1_U118=p1_U(2)*time2.^2 + p2_U(2)*time2 + p3_U(2);
      sh2_U118=p1_U(3)*time2.^2 + p2_U(3)*time2 + p3_U(3);
      plot(time2,shNC_U118,'-',time2,sh1_U118,'--',time2,sh2_U118,'.-')
    
  
Model Results:
1. T98G and T98G-R change with TMZ.
Figure 1 The spatial structure of BHET protein
T98G model results:
    
      Model:
          f(x) = (p1*x + p2) / (x + q1)
      Coefficients (with 95% confidence bounds):
            p1 =      -16.23  (-71.01, 38.54)
            p2 =     2.3e+04  (-6041, 5.204e+04)
            q1 =       223.7  (-86.67, 534.1)
      Goodness of fit:
        SSE: 181.2
        R-square: 0.9708
        Adjusted R-square: 0.9513
        RMSE: 7.772

      T98G-R model results:
      model:
          f(x) = (p1*x + p2) / (x + q1)
      Coefficients (with 95% confidence bounds):
            p1 =       60.62  (35.6, 85.63)
            p2 =   2.216e+04  (-1.846e+04, 6.277e+04)
            q1 =       220.2  (-197.3, 637.7)
      Goodness of fit:
        SSE: 38.81
        R-square: 0.9463
        Adjusted R-square: 0.9105
        RMSE: 3.597
    
  
2. U118 and U118-R change with TMZ.
Figure 2. Comparison of numerical and experimental results for U118 and U118-R .
U118 model results:
    
      Model:
          f(x) = (p1*x + p2) / (x + q1)
      Coefficients (with 95% confidence bounds):
            p1 =      -43.94  (-83.05, -4.833)
            p2 =   1.326e+05  (4.781e+04, 2.174e+05)
            q1 =        1301  (386.2, 2216)
      Goodness of fit:
        SSE: 46.65
        R-square: 0.9938
        Adjusted R-square: 0.9897
        RMSE: 3.944

      U118-R model results:
      Model:
          f(x) = (p1*x + p2) / (x + q1)
      Coefficients (with 95% confidence bounds):
            p1 =       38.56  (26.28, 50.85)
            p2 =   1.641e+05  (8.768e+04, 2.405e+05)
            q1 =        1651  (854.6, 2447)
      Goodness of fit:
        SSE: 2.795
        R-square: 0.9975
        Adjusted R-square: 0.9959
        RMSE: 0.9652
    
  
3. The change of cell activity with time (T98G knock-down).
Figure 3. Comparison of numerical and experimental results for T98G knock-down.
Lv-shNC model results:
    
      Linear model:
          f(x) = p1*x^2 + p2*x + p3
      Coefficients (with 95% confidence bounds):
            p1 =     0.00015  (-0.0002451, 0.000545)
            p2 =    0.008373  (-0.02131, 0.03805)
            p3 =      0.4919  (0.0483, 0.9354)
      Goodness of fit:
        SSE: 0.001283
        R-square: 0.9988
        Adjusted R-square: 0.9965
        RMSE: 0.03582
    
  
Lv-sh1 model results:
    
      Linear model:
          f(x) = p1*x^2 + p2*x + p3
      Coefficients (with 95% confidence bounds):
            p1 =   1.034e-05  (-0.0004661, 0.0004868)
            p2 =    0.009515  (-0.02628, 0.04531)
            p3 =      0.4832  (-0.05177, 1.018)
      Goodness of fit:
        SSE: 0.001866
        R-square: 0.9939
        Adjusted R-square: 0.9817
        RMSE: 0.0432
    
  
Lv-sh2 model results:
    
      Linear model:
          f(x) = p1*x^2 + p2*x + p3
      Coefficients (with 95% confidence bounds):
            p1 =   -3.54e-05  (-0.0001644, 9.364e-05)
            p2 =     0.01427  (0.00458, 0.02397)
            p3 =      0.4741  (0.3292, 0.6189)
      Goodness of fit:
        SSE: 0.0001369
        R-square: 0.9997
        Adjusted R-square: 0.999
        RMSE: 0.0117
    
  
4. The change of cell activity with time (U118 knock-down).
Figure 4. Comparison of numerical and experimental results for U118 knock-down .
Lv-shNC model results:
    
      Linear model:
          f(x) = p1*x^2 + p2*x + p3
      Coefficients (with 95% confidence bounds):
            p1 =   0.0001909  (1.578e-05, 0.000366)
            p2 =   0.0002687  (-0.01289, 0.01342)
            p3 =      0.1581  (-0.03857, 0.3547)
      Goodness of fit:
        SSE: 0.000252
        R-square: 0.9996
        Adjusted R-square: 0.9988
        RMSE: 0.01588
    
  
Lv-sh1 model results:
    
      Linear model:
          f(x) = p1*x^2 + p2*x + p3
      Coefficients (with 95% confidence bounds):
            p1 =   5.859e-05  (-1.589e-05, 0.0001331)
            p2 =    0.002512  (-0.003084, 0.008108)
            p3 =      0.1611  (0.07746, 0.2447)
      Goodness of fit:
        SSE: 4.56e-05
        R-square: 0.9997
        Adjusted R-square: 0.999
        RMSE: 0.006753
    
  
Lv-sh2 model results:
    
      Linear model:
          f(x) = p1*x^2 + p2*x + p3
      Coefficients (with 95% confidence bounds):
            p1 =    0.000103  (7.73e-05, 0.0001286)
            p2 =   0.0003825  (-0.001545, 0.00231)
            p3 =      0.1763  (0.1475, 0.2051)
      Goodness of fit:
        SSE: 5.408e-06
        R-square: 1
        Adjusted R-square: 0.9999
        RMSE: 0.002326
    
  
Conclusion
From the simulation results, our models can accurately simulate the experimental data with high R-square. The experimental data and simulation results showed that the drug resistance of tumor cells decreased with the increase of TMZ concentration.
By solving the model (1), we can know that with the increase of TMZ concentration, the tumor cell T98G-R will not be completely killed. No matter how high the concentration of TMZ is, at least 60% of tumor cells T98G-R survive. Similarly, according to the results of model (1), tumor cells U118 will not be completely killed, even if the concentration of TMZ is very high, 35% of tumor cells U118murr still survive.
After knocking down the mRNA level of PDRG1 in tumor cells (T98G and U118), the increasing trend of cell viability of Lv-sh1 and Lv-sh2 was significantly lower than that of Lv-shNC group. It is suggested that knocking down the mRNA level of tumor cell PDRG1 will reduce its resistance to TMZ.