In this part, we combined experimental data and numerical model results to study the variation of fluorescence signal GFP with time and arsenite concentration. Based on the results, the variation characteristics of GFP were analyzed to provide reference for the inversion of arsenite concentration. We did four sets of experiments, and the average GFP values are shown in the following tables.
ArSA-GFP | 0h | 1h | 2h | 3h |
---|---|---|---|---|
0(μg/L) | 2172756 | 2156646 | 2303444 | 2200693.8 |
20(μg/L) | 2168052 | 2082483 | 2498665 | 2345364.8 |
50(μg/L) | 2137249 | 2101361 | 2520527 | 2388312.8 |
100(μg/L) | 2130052 | 2151532 | 2490965 | 2364019 |
150(μg/L) | 2092658 | 2088392 | 2437316 | 2325883.5 |
ArSD-GFP | 0h | 1h | 2h | 3h |
---|---|---|---|---|
0(μg/L) | 2114005 | 2021859 | 2322535 | 2178671 |
20(μg/L) | 2159168 | 2031231 | 2444486 | 2288187 |
50(μg/L) | 2171890 | 2048819 | 2485226 | 2361719 |
100(μg/L) | 2102311 | 2011604 | 2482411 | 2380690 |
150(μg/L) | 2154590 | 2078689 | 2338642 | 2328193 |
ArSR-GFP | 0h | 1h | 2h | 3h |
---|---|---|---|---|
0(μg/L) | 2007906 | 1917922 | 2208283 | 2135826 |
20(μg/L) | 2035052 | 2004930 | 2381238 | 2319252 |
50(μg/L) | 2050514 | 1928481 | 2331246 | 2273673 |
100(μg/L) | 1984137 | 1955064 | 2335800 | 2329591 |
150(μg/L) | 2054256 | 1926563 | 2349759 | 2318759 |
According to the experimental data, the two-dimensional interpolation method was used to establish the fitting model.
The Matlab code is shown below:
clear;clc time=[0 1 2 3]; con=[0 20 50 100 150]; % % ArSA1=[2172756.25 2156646.25 2303444 2200693.75;... 2168052.25 2082482.75 2498664.5 2345364.75;... 2137248.75 2101361.25 2520527 2388312.75;... 2130052.25 2151532.25 2490964.75 2364019;... 2092658 2088392.25 2437316.25 2325883.5]; % ArSD2=[2114004.75 2021858.5 2322534.75 2178671.25;... 2159167.75 2031231 2444486.25 2288186.75;... 2171889.5 2048819 2485226 2361718.5;... 2102310.5 2011604.25 2482411 2380690.25;... 2154589.5 2078688.5 2338642 2328193]; % ArSR3=[2007906 1917921.5 2208283.25 2135825.75;... 2035052.25 2004929.5 2381238.25 2319251.5;... 2050513.75 1928480.75 2331246 2273673;... 1984137.25 1955064 2335799.5 2329591;... 2054255.75 1926562.5 2349758.5 2318759.25]; % t=0:0.1:3; % C=0:5:150; % z1=interp2(time,con,ArSA1,t,C','spline');% z2=interp2(time,con,ArSD2,t,C','spline');% z3=interp2(time,con,ArSR3,t,C','spline');% figure,surf(t,C,z1),title('ArSA-GFP'),xlabel('time (h)'),ylabel('C (ug/L)'),zlabel('GFP') figure,surf(t,C,z2),title('ArSD-GFP'),xlabel('time (h)'),ylabel('C (ug/L)'),zlabel('GFP') figure,surf(t,C,z3),title('ArSR-GFP'),xlabel('time (h)'),ylabel('C (ug/L)'),zlabel('GFP') % z1max=max(max(z1)) z1min=min(min(z1)) z2max=max(max(z2)) z2min=min(min(z2)) z3max=max(max(z3)) z3min=min(min(z3)) [i1,j1]=find(z1==max(max(z1))); t1_max=t(j1) C1_max=C(i1) [ii1,jj1]=find(z1==min(min(z1))); t1_min=t(jj1) C1_min=C(ii1) [i2,j2]=find(z2==max(max(z2))); t2_max=t(j2) C2_max=C(i2) [ii2,jj2]=find(z2==min(min(z2))); t2_min=t(jj2) C2_min=C(ii2) [i3,j3]=find(z3==max(max(z3))); t3_max=t(j3) C3_max=C(i3) [ii3,jj3]=find(z3==min(min(z3))); t3_min=t(jj3) C3_min=C(ii3)
The interpolation curved surfaces of ArSA-GFP, ArSD-GFP, and ArSR-GFP are obtained as shown in Figure 1.
According to the model results, we can obtain the maximum and minimum values of GFP within the range of experimental conditions (0<t<3h and 0<c<150ug/L):
For ArSA, the maximum value of GFP is 2.6060e+06, when t=2.4h and c=35ug/L; the minimum value of GFP is 1.9814e+06, when t=0.5h and c=30ug/L.
For ArSD, the maximum value of GFP is 2.5811e+06, when t=2.4h and c=85ug/L; the minimum value of GFP is 1.9134e+06, when t=0.5h and c=110ug/L.
For ArSR, the maximum value of GFP is 2.4677e+06, when t=2.5h and c=25ug/L; the minimum value of GFP is 1.8446e+06, when t=0.6h and c=65ug/L.
By analyzing the above model results, we found that when the arsenite concentration was fixed, the change of ArSA-GFP and ArSD-GFP signal with time was consistent with the Fourier function (Figure 2 shows the fitting results of ArSA-GFP). The Fourier function is expressed as follows:
here we set n=1, and the Fourier function can be simplified as:
Where w represents frequency.
We found that the frequency of ArSA- and ArSD-GFP signal decreased gradually with the increase of arsenic concentration (as shown in the following figures and tables).
C (ug/L) | 0 | 20 | 50 | 100 | 150 |
---|---|---|---|---|---|
w (h-1) | 1.905 | 1.808 | 1.732 | 1.69 | 1.701 |
C (ug/L) | 0 | 20 | 50 | 100 | 150 |
---|---|---|---|---|---|
w (h-1) | 1.899 | 1.858 | 1.805 | 1.736 | 1.701 |
The model can simulate the GFP fluorescence signals of ArSA, ArSD and ArSR at different arsenite concentrations and time. Analyzing the model results, we found that the arsenite concentration is correlated with the frequency of GFP fluorescence signal. For ArSA-GFP, the relationship is w=-0.0012C+1.847, and for ArSD-GFP, the relationship is w=-0.0013C+1.8846. Therefore, we can deduce the arsenite concentration according to the above relationship. It should be noted that the above relationships are obtained from our four sets of experimental data. The practical application still needs to be verified by a large number of experiments.