Modeling

In this part, we combined experimental data and numerical model results to study the variation of fluorescence signal GFP with time and arsenite concentration. Based on the results, the variation characteristics of GFP were analyzed to provide reference for the inversion of arsenite concentration. We did four sets of experiments, and the average GFP values are shown in the following tables.

Table 1.The average GFP values of ArSA, ArSD and ArSR
ArSA-GFP 0h 1h 2h 3h
0(μg/L) 2172756 2156646 2303444 2200693.8
20(μg/L) 2168052 2082483 2498665 2345364.8
50(μg/L) 2137249 2101361 2520527 2388312.8
100(μg/L) 2130052 2151532 2490965 2364019
150(μg/L) 2092658 2088392 2437316 2325883.5
ArSD-GFP 0h 1h 2h 3h
0(μg/L) 2114005 2021859 2322535 2178671
20(μg/L) 2159168 2031231 2444486 2288187
50(μg/L) 2171890 2048819 2485226 2361719
100(μg/L) 2102311 2011604 2482411 2380690
150(μg/L) 2154590 2078689 2338642 2328193
ArSR-GFP 0h 1h 2h 3h
0(μg/L) 2007906 1917922 2208283 2135826
20(μg/L) 2035052 2004930 2381238 2319252
50(μg/L) 2050514 1928481 2331246 2273673
100(μg/L) 1984137 1955064 2335800 2329591
150(μg/L) 2054256 1926563 2349759 2318759

According to the experimental data, the two-dimensional interpolation method was used to establish the fitting model.

The Matlab code is shown below:

clear;clc
time=[0 1 2 3];
con=[0 20 50 100 150]; %
%
ArSA1=[2172756.25   2156646.25  2303444 2200693.75;...
2168052.25  2082482.75  2498664.5   2345364.75;...
2137248.75  2101361.25  2520527 2388312.75;...
2130052.25  2151532.25  2490964.75  2364019;...
2092658 2088392.25  2437316.25  2325883.5];
%
ArSD2=[2114004.75   2021858.5   2322534.75  2178671.25;...
2159167.75  2031231 2444486.25  2288186.75;...
2171889.5   2048819 2485226 2361718.5;...
2102310.5   2011604.25  2482411 2380690.25;...
2154589.5   2078688.5   2338642 2328193];
%
ArSR3=[2007906  1917921.5   2208283.25  2135825.75;...
2035052.25  2004929.5   2381238.25  2319251.5;...
2050513.75  1928480.75  2331246 2273673;...
1984137.25  1955064 2335799.5   2329591;...
2054255.75  1926562.5   2349758.5   2318759.25];
%
t=0:0.1:3;  %
C=0:5:150;    %
z1=interp2(time,con,ArSA1,t,C','spline');%
z2=interp2(time,con,ArSD2,t,C','spline');%
z3=interp2(time,con,ArSR3,t,C','spline');%
figure,surf(t,C,z1),title('ArSA-GFP'),xlabel('time (h)'),ylabel('C (ug/L)'),zlabel('GFP')
figure,surf(t,C,z2),title('ArSD-GFP'),xlabel('time (h)'),ylabel('C (ug/L)'),zlabel('GFP')
figure,surf(t,C,z3),title('ArSR-GFP'),xlabel('time (h)'),ylabel('C (ug/L)'),zlabel('GFP')
%
z1max=max(max(z1))
z1min=min(min(z1))
z2max=max(max(z2))
z2min=min(min(z2))
z3max=max(max(z3))
z3min=min(min(z3))
[i1,j1]=find(z1==max(max(z1)));
t1_max=t(j1)
C1_max=C(i1)
[ii1,jj1]=find(z1==min(min(z1)));
t1_min=t(jj1)
C1_min=C(ii1)
[i2,j2]=find(z2==max(max(z2)));
t2_max=t(j2)
C2_max=C(i2)
[ii2,jj2]=find(z2==min(min(z2)));
t2_min=t(jj2)
C2_min=C(ii2)
[i3,j3]=find(z3==max(max(z3)));
t3_max=t(j3)
C3_max=C(i3)
[ii3,jj3]=find(z3==min(min(z3)));
t3_min=t(jj3)
C3_min=C(ii3)
        

Model Results:

The interpolation curved surfaces of ArSA-GFP, ArSD-GFP, and ArSR-GFP are obtained as shown in Figure 1.

Figure 1. Fluorescence signal GFP against arsenite concentration and time.

According to the model results, we can obtain the maximum and minimum values of GFP within the range of experimental conditions (0<t<3h and 0<c<150ug/L):

For ArSA, the maximum value of GFP is 2.6060e+06, when t=2.4h and c=35ug/L; the minimum value of GFP is 1.9814e+06, when t=0.5h and c=30ug/L.

For ArSD, the maximum value of GFP is 2.5811e+06, when t=2.4h and c=85ug/L; the minimum value of GFP is 1.9134e+06, when t=0.5h and c=110ug/L.

For ArSR, the maximum value of GFP is 2.4677e+06, when t=2.5h and c=25ug/L; the minimum value of GFP is 1.8446e+06, when t=0.6h and c=65ug/L.

Analysis:

By analyzing the above model results, we found that when the arsenite concentration was fixed, the change of ArSA-GFP and ArSD-GFP signal with time was consistent with the Fourier function (Figure 2 shows the fitting results of ArSA-GFP). The Fourier function is expressed as follows:

here we set n=1, and the Fourier function can be simplified as:

Where w represents frequency.

Figure 2. ArSA-GFP signal changes with time under different arsenite concentrations (c=0, 20, 50, 100, and 150ug/L).

We found that the frequency of ArSA- and ArSD-GFP signal decreased gradually with the increase of arsenic concentration (as shown in the following figures and tables).

Table 2. The frequency of ArSA-GFP signal
C (ug/L) 0 20 50 100 150
w (h-1) 1.905 1.808 1.732 1.69 1.701
Figure 3. The model of ArSA-GFP signal frequency
Table 3. The frequency of ArSD-GFP signal
C (ug/L) 0 20 50 100 150
w (h-1) 1.899 1.858 1.805 1.736 1.701
Figure 4. The model of ArSD-GFP signal frequency

Conclusion

The model can simulate the GFP fluorescence signals of ArSA, ArSD and ArSR at different arsenite concentrations and time. Analyzing the model results, we found that the arsenite concentration is correlated with the frequency of GFP fluorescence signal. For ArSA-GFP, the relationship is w=-0.0012C+1.847, and for ArSD-GFP, the relationship is w=-0.0013C+1.8846. Therefore, we can deduce the arsenite concentration according to the above relationship. It should be noted that the above relationships are obtained from our four sets of experimental data. The practical application still needs to be verified by a large number of experiments.