Results

Overview

  1. Create fusion proteins by jointing fluorescent protein with BsIA
  2. Create fusion proteins by jointing LL37 with BsIA
  3. Create fusion proteins by jointing mPETase with BsIA

I. Create fusion proteins by jointing fluorescent protein with BsIA

1. Molecular Cloning

For molecular cloning, we selected pET28a as vector. We successfully amplified 20 gene segments of BsIA, EBFP(as control group), EGFP(as control group), mHoneydew(as control group), mOrange(as control group), EBFP-GSlinker-BslA, EBFP-TEVlinker-BslA, EGFP-GSlinker-BslA, EGFP-TEVlinker-BslA, mHoneydew-GSlinker-BslA, mHoneydew-TEVlinker-BslA, mOrange-GSlinker-BslA, mOrange-TEVlinker-BslA (Figure 1a). Then we digested and connected all the segments to pET28a vector through two restriction enzymes of BamHI and XhoI. At present, 20 recombinant plasmids have been successfully constructed (Figure 1b).

Figure 1. (a) PCR results. M: marker 1, 2: mHoneydew(678bp) 3, 4: mOrange(711bp) 5, 6: mOrange-TEVlinker-BslA(1155bp) 7, 8: mOrange-GSlinker-BslA(1158bp) 9: BslA(423bp) 10: EGFP-GSlinker-BslA(1173bp) 11: EGFP-TEVlinker-BslA(1170bp) 12, 13: EBFP-TEVlinker-BslA(1164bp) 14, 15: EBFP-GSlinker-BslA(1167bp) 16: EGFP(726bp) 17: EBFP(718bp) 18: mHoneydew-TEVlinker-BslA(1122bp) 19: mHoneydew-GSlinker-BslA(1123bp)
(b) Enzyme digestion verification results. 1: EBFP-GSlinker-BslA(1167bp) 2: EBFP-TEVlinker-BslA(1164bp) 3: mHoneydew-GSlinker-BslA(1123bp) 4: mHoneydew-TEVlinker-BslA(1122bp) 5: EGFP-GSlinker-BslA(1173bp) 6: EGFP-TEVlinker-BslA(1170bp) 7: mOrange-GSlinker-BslA(1158bp) 8: mOrange-TEVlinker-BslA(1164bp) 9: BslA(423bp) 10: EBFP(718bp) 11: EGFP(726bp) 12: mHoneydew(678bp) 13: mOrange(711bp)

2. Protein Expression

We transformed 6 recombinant plasmids (pET28a-EBFP, pET28a-mHoneydew, pET28a-mOrange, pET28a-EBFP-GSlinker-BslA, pET28a-mHoneydew-GSlinker-BslA, pET28a-mOrange-GSlinker-BslA) into BL21 and Rosetta expressing strains.

For 3 recombinant strains (pET28a-EBFP-GSlinker-BslA, pET28a-mHoneydew-GSlinker-BslA, pET28a-mOrange-GSlinker-BslA), TJUSLS_China helped us try three IPTG induction concentrations of 0.1mM, 0.3mM, 0.5mM and two induction temperature of 16°C,37°C, respectively. We found that the induction concentration of 0.5mM IPTG and the induction temperature of 37°C were the best (Figure 2-7a). In addition, the color of the bacterial pellet after centrifugation can also directly prove that the fusion protein of the fluorescent protein has been successfully induced to express (Figure 2-7b).


Figure 2. (a) SDS-PAGE of pET28a-EBFP-GSlinker-BsIA transformed into BL21 expressing strains. Induction time: 12h M: GoldBand Plus 3-color Regular Range Protein Marker(8-180 kDa), 1,3,5,7,9,11: Before induction 2,4,6,8,10,12: After induction; 2: 37℃ 0.1mM IPTG,4: 16℃ 0.1mM IPTG,6: 37℃ 0.3mM IPTG,8: 16℃ 0.3mM IPTG,10: 37℃ 0.5mM IPTG,12: 16℃ 0.5mM IPTG
(b) Strain after induction. 1: 37℃ 0.1mM IPTG, 2: 37℃ 0.3mM IPTG, 3: 37℃ 0.5mM IPTG, 4: 16℃ 0.1mM IPTG, 5: 16℃ 0.3mM IPTG, 6: 16℃ 0.5mM IPTG,

Figure 3. (a) SDS-PAGE of pET28a-EBFP-GSlinker-BsIA transformed into Rosetta expressing strains. Induction time: 12h M: GoldBand Plus 3-color Regular Range Protein Marker(8-180 kDa), 1,3,5,7,9,11: Before induction 2,4,6,8,10,12: After induction; 2: 37℃ 0.1mM IPTG,4: 16℃ 0.1mM IPTG,6: 37℃ 0.3mM IPTG,8: 16℃ 0.3mM IPTG,10: 37℃ 0.5mM IPTG,12: 16℃ 0.5mM IPTG
(b) Strain after induction. 1: 37℃ 0.1mM IPTG, 2: 37℃ 0.3mM IPTG, 3: 37℃ 0.5mM IPTG, 4: 16℃ 0.1mM IPTG, 5: 16℃ 0.3mM IPTG, 6: 16℃ 0.5mM IPTG,

Figure 4. (a) SDS-PAGE of pET28a-mHoneydew-GSlinker-BsIA transformed into BL21 expressing strains. Induction time: 12h
M: GoldBand Plus 3-color Regular Range Protein Marker(8-180 kDa), 1,3,5,7,9,11: Before induction 2,4,6,8,10,12: After induction; 2: 37℃ 0.1mM IPTG,4: 16℃ 0.1mM IPTG,6: 37℃ 0.3mM IPTG,8: 16℃ 0.3mM IPTG,10: 37℃ 0.5mM IPTG,12: 16℃ 0.5mM IPTG
(b) Strain after induction. 1: 37℃ 0.1mM IPTG, 2: 37℃ 0.3mM IPTG, 3: 37℃ 0.5mM IPTG, 4: 16℃ 0.1mM IPTG, 5: 16℃ 0.3mM IPTG, 6: 16℃ 0.5mM IPTG,

Figure 5. (a) SDS-PAGE of pET28a-mHoneydew-GSlinker-BsIA transformed into Rosetta expressing strains. Induction time: 12h
M: GoldBand Plus 3-color Regular Range Protein Marker(8-180 kDa), 1,3,5,7,9,11: Before induction 2,4,6,8,10,12: After induction; 2: 37℃ 0.1mM IPTG,4: 16℃ 0.1mM IPTG,6: 37℃ 0.3mM IPTG,8: 16℃ 0.3mM IPTG,10: 37℃ 0.5mM IPTG,12: 16℃ 0.5mM IPTG
(b) Strain after induction. 1: 37℃ 0.1mM IPTG, 2: 37℃ 0.3mM IPTG, 3: 37℃ 0.5mM IPTG, 4: 16℃ 0.1mM IPTG, 5: 16℃ 0.3mM IPTG, 6: 16℃ 0.5mM IPTG,

Figure 6. (a) SDS-PAGE of pET28a-mOrange-GSlinker-BsIA transformed into BL21 expressing strains. Induction time: 12h
M: GoldBand Plus 3-color Regular Range Protein Marker(8-180 kDa), 1,3,5,7,9,11: Before induction 2,4,6,8,10,12: After induction; 2: 37℃ 0.1mM IPTG,4: 16℃ 0.1mM IPTG,6: 37℃ 0.3mM IPTG,8: 16℃ 0.3mM IPTG,10: 37℃ 0.5mM IPTG,12: 16℃ 0.5mM IPTG
(b) 1: 37℃ Before induction 2-4: After induction; 2: 37℃ 0.1mM IPTG, 3: 37℃ 0.3mM IPTG, 4: 37℃ 0.5mM IPTG, 5-7: 16℃ Before induction 8-10: After induction; 8: 16℃ 0.1mM IPTG, 9: 16℃ 0.3mM IPTG, 10: 16℃ 0.5mM IPTG,

Figure 7. (a) SDS-PAGE of pET28a-mOrange-GSlinker-BsIA transformed into Rosetta expressing strains. Induction time: 12h
M: GoldBand Plus 3-color Regular Range Protein Marker(8-180 kDa), 1,3,5,7,9,11: Before induction 2,4,6,8,10,12: After induction; 2: 37℃ 0.1mM IPTG,4: 16℃ 0.1mM IPTG,6: 37℃ 0.3mM IPTG,8: 16℃ 0.3mM IPTG,10: 37℃ 0.5mM IPTG,12: 16℃ 0.5mM IPTG
(b) 1: 37℃ Before induction 2-4: After induction; 2: 37℃ 0.1mM IPTG, 3: 37℃ 0.3mM IPTG, 4: 37℃ 0.5mM IPTG, 5-7: 16℃ Before induction 8-10: After induction; 8: 16℃ 0.1mM IPTG, 9: 16℃ 0.3mM IPTG, 10: 16℃ 0.5mM IPTG,

3. Detection of fusion protein function

After the cells of the recombinant strains were induced, centrifuged, and sonicated, the soluble proteins expressed by the strains were all in the supernatant (use 1×PBS as buffer). In order to verify that the fusion protein (EBFP-GSlinker-BslA, mHoneydew-GSlinker-BslA, mOrange-GSlinker-BslA) was successfully fused and expressed compared to the control group (EBFP, mHoneydew, mOrange). We attempted to conduct water contact angle experiments. Due to experimental conditions, we cannot use professional instruments.
We used parafilm as the substrate, which is an extremely hydrophobic interface, and added droplets of the supernatant of the control group and the supernatant of the fusion protein experimental group respectively for observation. We found that the contact angle of the control group was much smaller than that of the experimental group. This means that the supernatant of the control group was hydrophobic as a whole, while the experimental group was hydrophilic. BslA, as a hydrophobin, has the characteristic of reversing surface properties. Through this experiment, we can prove the existence of BslA in the experimental group. (Figure 8).

Figure 8. Water contact angle.

4. (a) Aqueous two-phase separation (ATPS) Testing

Then, we used 1×PBS as a blank control, we added isobutanol to the protein supernatant, shaken and let stand for a few minutes until the two phases were clearly separated. We found that the fluorescence color was still in the lower layer (aqueous phase) in both the experimental group and the control group. (Figure 9)

Figure 9. ATPS testing.

In theory, fluorescence should appear in the upper layer (organic phase) because When a protein fuses with a hydrophobin, the hydrophobin changes the hydrophobicity of the protein, which causes the protein to aggregate into the surfactants.

Our experiments did not get perfect results, we analyzed some possible reasons and tried to continue experiments to explore in the future.

First, the current system is still small. Although we can see the fluorescence color, it is very shallow, and even though there may be some fluorescence in the organic phase, it is not visible to the naked eye due to the small amount. Therefore, we need to expand the system of protein-induced expression in the future.

Second, this may be related to the choice of buffer. We used 1xPBS to dissolve the supernatant obtained after sonication, and it may be possible to change the buffer of other pH to have different results.

Third, it may be related to the hydrophilicity and hydrophobicity of the supernatant. The supernatant contains all proteins expressed by the cells, including the target protein. Through the water contact angle experiment, we can find that the supernatant of the control group is hydrophobic as a whole, which may be caused by the hydrophobicity of some endogenous proteins in cells. Their presence may affect the function of BslA in the ATPS system.

Based on a review published at 2016 (Iqbal,M. et al.), we assumed that other potential rationales that contribute unsuccessful partitioning of protein in ATPS might be unsuitable concentration of salt aqueous solution, unsuitable temperature and incorrect selection of solute in organic phase. Extremely high concentration of salts may alter the hydrophobicity of biomolecules. As a consequence of the hydrophobic ions force the partitioning of counter ions to phase with higher hydrophobicity and vice versa. Thereafter, the addition of salts has critical influence on the partitioning coefficient based on following equation. The temperature can alter the coefficient as well. Moreover, it can generate effect on partitioning through the through viscosity and density.

Conc.AT represents concentration of component A in top phase and Conc.AB represents the concentration of A in the bottom phase at equilibrium.

II. Create fusion proteins by jointing LL37 with BsIA

1. Molecular Cloning

For molecular cloning, we selected pET28a as vector. We successfully amplified two gene segments of LL37 (as control group), LL37-GSlinker-BslA (Figure 10a). Then we digested and connected all the segments to pET28a vector through two restriction enzymes of BamHI and XhoI. At present, two recombinant plasmids have been successfully constructed (Figure 10b).

Figure 10. (a) PCR results. M:marker 1:LL37(513bp) 2:LL37-GSlinker-BslA(960bp)
(b) Enzyme digestion verification results. M:marker 1:LL37(513bp) 2:LL37-GSlinker-BslA(960bp)

III. Create fusion proteins by jointing mPETase with BsIA

1. Molecular Cloning

For molecular cloning, we selected pET28a as vector. We successfully amplified two gene segments of LL37 (as control group), LL37-GSlinker-BslA (Figure 10a). Then we digested and connected all the segments to pET28a vector through two restriction enzymes of BamHI and XhoI. At present, two recombinant plasmids have been successfully constructed (Figure 10b).

Figure 11. (a) PCR results. M:marker 1-6:mPETase(795bp) 7:mPETase-GSlinker-BslA(1242bp) (b) Enzyme digestion verification results. M:marker 1:mPETase(795bp) 2-4:mPETase-GSlinker-BslA(1242bp)